
ONVIF™ – 1 – Security Configuration – Ver. 24.06

ONVIF™
Advanced Security Service Specification

Version 24.06

June 2024

ONVIF™ – 2 – Security Configuration – Ver. 24.06

Copyright © 2008-2024 ONVIF™ All rights reserved.

Recipients of this document may copy, distribute, publish, or display this document so long as this copyright notice, license and disclaimer
are retained with all copies of the document. No license is granted to modify this document.

THIS DOCUMENT IS PROVIDED "AS IS," AND THE CORPORATION AND ITS MEMBERS AND THEIR AFFILIATES, MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; OR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

IN NO EVENT WILL THE CORPORATION OR ITS MEMBERS OR THEIR AFFILIATES BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THIS DOCUMENT, WHETHER OR NOT (1) THE CORPORATION, MEMBERS OR THEIR AFFILIATES HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR (2) SUCH DAMAGES WERE REASONABLY FORESEEABLE, AND ARISING
OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THIS DOCUMENT. THE FOREGOING DISCLAIMER AND LIMITATION
ON LIABILITY DO NOT APPLY TO, INVALIDATE, OR LIMIT REPRESENTATIONS AND WARRANTIES MADE BY THE MEMBERS
AND THEIR RESPECTIVE AFFILIATES TO THE CORPORATION AND OTHER MEMBERS IN CERTAIN WRITTEN POLICIES OF THE
CORPORATION.

ONVIF™ – 3 – Security Configuration – Ver. 24.06

CONTENTS

1 Scope 6

2 Normative References 6

3 Terms and Definitions 8

3.1 Definitions .. 8

3.2 Abbreviations ... 8

3.3 Namespace .. 9

4 Overview 9

4.1 General Structure ... 9

4.2 Certificate-based Client Authentication ... 10
4.2.1 Overview ... 10
4.2.2 Certification path validation .. 10
4.2.3 Construct Prospective Certification Paths .. 10
4.2.4 Validate Prospective Certification Path .. 11
4.2.5 Determine Certificate Revocation Status ... 12
4.2.6 Certification Path Validation Policy .. 12

4.2.6.1 Certification Path Validation Algorithm Parameters .. 12
4.2.6.2 Revocation Status Checking ... 13
4.2.6.3 Trust Anchors ... 13
4.2.6.4 Certificate Repository for constructing Certification Paths .. 13
4.2.6.5 Specific certification path validation parameters .. 13

4.2.7 Validate CRLs ... 14

4.3 JWT-based client authorization ... 14
4.3.1 Usage of JWT-based client authentication over HTTP ... 15
4.3.2 Usage of JWT-based client authentication over HTTPS ... 15
4.3.3 Usage of JWT-based client authentication over SCTP ... 15
4.3.4 Usage of JWT-based client authentication over RTSP ... 15
4.3.5 Usage of JWT-based client authentication over RTSPS ... 16

4.4 IEEE 802.1X .. 16

4.5 Authorization Servers .. 16
4.5.1 Device authentication and authorization .. 16
4.5.2 User authentication and authorization ... 17
4.5.3 Authorization server configuration ... 17

5 Security Configuration Service 18

5.1 General Structure ... 18

5.2 Keystore ... 19
5.2.1 Elements of the Keystore ... 19
5.2.2 Unique Identifiers ... 19
5.2.3 Uniqueness of Objects in the Keystore ... 20
5.2.4 Referential Integrity .. 20
5.2.5 Key Status ... 21
5.2.6 Keystore Operations .. 22

5.2.6.1 Passphrase Management .. 22
5.2.6.2 Key Management .. 23
5.2.6.3 Certificate Management ... 28
5.2.6.4 CRL Management ... 41
5.2.6.5 Certification Path Validation Policy Management .. 43

5.3 TLS Server ... 45

ONVIF™ – 4 – Security Configuration – Ver. 24.06

5.3.1 Elements of the TLS Server ... 45
5.3.2 Authorization of TLS authenticated connections .. 45
5.3.3 TLS Server Operations .. 46

5.3.3.1 AddServerCertificateAssignment .. 46
5.3.3.2 RemoveServerCertificateAssignment .. 47
5.3.3.3 ReplaceServerCertificateAssignment .. 48
5.3.3.4 GetAssignedServerCertificates ... 49
5.3.3.5 SetClientAuthenticationRequired .. 49
5.3.3.6 GetClientAuthenticationRequired .. 50
5.3.3.7 SetCnMapsToUser .. 50
5.3.3.8 GetCnMapsToUser .. 50
5.3.3.9 AddCertPathValidationPolicyAssignment .. 51
5.3.3.10 RemoveCertPathValidationPolicyAssignment .. 51
5.3.3.11 ReplaceCertPathValidationPolicyAssignment .. 52
5.3.3.12 GetAssignedCertPathValidationPolicies .. 52
5.3.3.13 SetEnabledTLSVersions .. 53
5.3.3.14 GetEnabledTLSVersions .. 53

5.4 IEEE 802.1X .. 54
5.4.1 AddDot1XConfiguration .. 54
5.4.2 GetAllDot1XConfigurations ... 55
5.4.3 GetDot1XConfiguration ... 55
5.4.4 DeleteDot1XConfiguration .. 56
5.4.5 SetNetworkInterfaceDot1XConfiguration .. 56
5.4.6 GetNetworkInterfaceDot1XConfiguration ... 57
5.4.7 DeleteNetworkInterfaceDot1XConfiguration ... 58

5.5 Autorization Server Configuration .. 58
5.5.1 GetAuthorizationServerConfigurations ... 58
5.5.2 CreateAuthorizationServerConfiguration .. 59
5.5.3 SetAuthorizationServerConfiguration ... 59
5.5.4 DeleteAuthorizationServerConfiguration .. 60

5.6 JWT-based authentication ... 60
5.6.1 GetJWTConfiguration ... 60
5.6.2 SetJWTConfiguration ... 60

5.7 Capabilities ... 61
5.7.1 GetServiceCapabilities ... 61
5.7.2 Keystore Capabilities ... 61
5.7.3 TLS Server Capabilities ... 63
5.7.4 IEEE 802.1X Capabilities ... 64
5.7.5 Authorization Server Capabilities .. 64
5.7.6 Capability-implied Requirements ... 64

5.8 Events .. 69
5.8.1 Key Status ... 69

5.9 Service specific data types ... 70

6 Security Considerations 70

7 Design Rationale 71

7.1 General Design Goals .. 71

7.2 Keystore ... 71

7.3 TLS Server ... 72

Annex A JWT Content example 73

Annex B JWT over SCTP example 74

ONVIF™ – 5 – Security Configuration – Ver. 24.06

Annex C JWT over HTTPS example 75

Annex D JWT over RTSPS example 76

Annex E Revision History 77

ONVIF™ – 6 – Security Configuration – Ver. 24.06

1 Scope

This document defines the web service interface for ONVIF security configuration features such as a keystore
and a TLS server on an ONVIF device.

Web service usage is outside of the scope of this document. Please refer to the ONVIF core specification.

2 Normative References

Basic Security Profile Version 1.1 Committee Specification 01, OASIS Standard, 22 October 2004

<https://docs.oasis-open.org/ws-brsp/BasicSecurityProfile/v1.1/cs01/BasicSecurityProfile-v1.1-cs01.pdf>

IANA TLS Supported Groups, Elliptic curve groups

<https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8>

IEEE 802.1X, Port-Based Network Access Control

<http://standards.ieee.org/getieee802/download/802.1X-2004.pdf>

ONVIF Core Specification

<http://www.onvif.org/specs/core/ONVIF-Core-Specification.pdf>

IETF RFC 2246 The TLS Protocol Version 1.0

<http://www.ietf.org/rfc/rfc2246.txt>

IETF RFC 2898 PKCS#5 Password-based Cryptography Specification v2.0

<http://www.ietf.org/rfc/rfc2898.txt>

IETF RFC 2986 PKCS #10: Certification RequestSyntaxSpecification Version 1.7

<http://www.ietf.org/rfc/rfc2986.txt>

IETF RFC 3279 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile

<http://www.ietf.org/rfc/rfc3279.txt>

IETF RFC 3447 Public Key Cryptography Standards #1: RSA Cryptography Specifications Version 2.1

<http://www.ietf.org/rfc/rfc3447.txt>

IETF RFC 4055 Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

<http://www.ietf.org/rfc/rfc4055.txt>

IETF RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1

<http://www.ietf.org/rfc/rfc4346.txt>

IETF RFC 5208 Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification
v1.2

<http://www.ietf.org/rfc/rfc5208.txt>

IETF RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2

https://docs.oasis-open.org/ws-brsp/BasicSecurityProfile/v1.1/cs01/BasicSecurityProfile-v1.1-cs01.pdf
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf
http://www.onvif.org/specs/core/ONVIF-Core-Specification.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2898.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc4055.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5208.txt

ONVIF™ – 7 – Security Configuration – Ver. 24.06

<http://www.ietf.org/rfc/rfc5246.txt>

IETF RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

<http://www.ietf.org/rfc/rfc5280.txt>

IETF RFC 5958 Asymmetric Key Packages

<http://www.ietf.org/rfc/rfc5958.txt>

IETF RFC 5959 Algorithms for Asymmetric Key Package Content Type

<http://www.ietf.org/rfc/rfc5959.txt>

IETF RFC 6749 The OAuth 2.0 Authorization Framework

<http://www.ietf.org/rfc/rfc6749.txt>

IETF RFC 6750 The OAuth 2.0 Authorization Framework: Bearer Token Usage

<http://www.ietf.org/rfc/rfc6750.txt>

IETF RFC 7517 JSON Web Key (JWK)

<http://www.ietf.org/rfc/rfc7517.txt>

IETF RFC 7518 JSON Web Algorithms (JWA)

<http://www.ietf.org/rfc/rfc7518.txt>

IETF RFC 7519 JSON Web Token (JWT)

<http://www.ietf.org/rfc/rfc7519.txt>

IETF RFC 7643 System for Cross-domain Identity Management: Core Schema

<http://www.ietf.org/rfc/rfc7643.txt>

IETF RFC 8414 OAuth 2.0 Authorization Server Metadata

<http://www.ietf.org/rfc/rfc8414.txt>

IETF RFC 8705 OAuth 2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens

<http://www.ietf.org/rfc/rfc8705.txt>

Unified Modeling Language (UML)

<http://www.omg.org/spec/UML>

OpenID Connect Core

<https://openid.net/specs/openid-connect-core-1_0.html>

OpenID Connect Discovery

<https://openid.net/specs/openid-connect-discovery-1_0.html>

PKCS#5 Password-based Encryption Standard v1.5, RSA Laboratories, 1993

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5958.txt
http://www.ietf.org/rfc/rfc5959.txt
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc7517.txt
http://www.ietf.org/rfc/rfc7518.txt
http://www.ietf.org/rfc/rfc7519.txt
http://www.ietf.org/rfc/rfc7643.txt
http://www.ietf.org/rfc/rfc8414.txt
http://www.ietf.org/rfc/rfc8705.txt
http://www.omg.org/spec/UML
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html

ONVIF™ – 8 – Security Configuration – Ver. 24.06

PKCS#12: Personal Information Exchange Syntax v1.0, RSA Laboratories, 1999

3 Terms and Definitions

3.1 Definitions

Alias An alias is a name for an object on the device that is chosen by the client and treated
transparently by the device.

Certificate A certificate as used in this specification binds a public key to a subject entity. The cer-
tificate is digitally signed by the certificate issuer (the certification authority) to allow for
verifying its authenticity.

Certification Au-
thority

A certification authority is an entity that issues certificates to subject entities.

Certification
Path

A certification path is a sequence of certificates in which the signature of each certificate
except for the last certificate can be verified with the subject public key in the next cer-
tificate in the sequence.

Certificate Re-
vocation List

A certificate revocation list is a digitally signed list of IDs of certificates that have been
revoked by the issuing CA.

Digital Signature A digital signature for an object allows to verify the object’s authenticity, i.e., to check
whether the object has in fact been created by the signer and has not been modified
afterwards. A digital signature is based on a key pair, where the private key is used to
create the signature and the public key is used for verification of the signature.

ECC key pair A key pair that is accepted as input by the ECC algorithm.

Inner The authentication protocol used after having established a secure connection using the
outer authentication protocol. Also called Stage 2.

Key A key is an input to a cryptographic algorithm. Sufficient randomness of the key is usually
a necessary condition for the security of the algorithm. This specification supports RSA
key pairs as keys.

Key Pair A key that consists of a public key and (optionally) a private key.

Outer The initial authentication protocol used to establish a secure connection between the
device and the IEEE 802.1X authentication server. Also called Stage 1.

Passphrase A secret string that is shared between two or more parties. A passphrase may be used
to derive keys.

RSA key pair A key pair that is accepted as input by the RSA algorithm.

TLS Server TLS-enabled HTTP Server (HTTPS)

3.2 Abbreviations

CA Certification Authority

CN Common Name

CRL Certificate Revocation List

CSR Certificate Signing Request (also called Certification Request)

EAP Extensible Authentication Protocol

ECC Elliptic Curve Cryptography

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

ONVIF™ – 9 – Security Configuration – Ver. 24.06

JWS JSON Web Signature

JWT JSON Web Token

MAC Message Authentication Code

MD5 Message Digest Algorithm 5

MSCHAPv2 Microsoft’s Challenge Handshake Authentication Protocol version 2

PEAP Protected EAP

SCTP Stream Control Transmission Protocol

SHA Secure Hashing Algorithm

SSL Secure Socket Layer

TLS Transport Layer Security

TTLS Tunneled TLS

WS Web Services

3.3 Namespace

Table 1 lists the namespaces references by this document.

Table 1: Referenced namespaces (with prefix)

Prefix Namespace URI

env http://www.w3.org/2003/05/soap-envelope

tas http://www.onvif.org/ver10/advancedsecurity/wsdl

ter http://www.onvif.org/ver10/error

tt http://www.onvif.org/ver10/schema

xs http://www.w3.org/2001/XMLSchema

4 Overview

4.1 General Structure

This specification covers the following security configuration features:

• Keys and certificates management interface (keystore)

• TLS server configuration interface

• IEEE 802.1X

Basic security features such as user authentication based on WS UsernameToken and HTTP Authentication as
well as a default access policy are specified in the ONVIF Core Specification as part of the device management
service.

WSDL for the Security Configuration Service is specified in <http://www.onvif.org/ver10/advancedsecurity/ws-
dl/security.wsdl>.

All sections in this specification are normative unless explicitly marked as informative.

http://www.onvif.org/ver10/advancedsecurity/wsdl/security.wsdl
http://www.onvif.org/ver10/advancedsecurity/wsdl/security.wsdl

ONVIF™ – 10 – Security Configuration – Ver. 24.06

4.2 Certificate-based Client Authentication

4.2.1 Overview

A client may be authenticated based on a certification path that it presents to the server, e.g., a TLS client is
authenticated by a TLS server.

The certificate-based authentication is performed according to a certification path validation algorithm that
enforces a certification path validation policy. A certification path validation policy contains at least one trust
anchor (in the form of a certificate) that the device shall assume to be correct. Furthermore, a certification
path validation policy contains sources of revocation information to be considered when determining whether
a certificate in question has been revoked. This specification uses CRLs as sources of revocation information,
while future versions may include additional sources.

A certificate revocation list (CRL) contains certificates that have been revoked by the issuing CA. Therefore,
the private key corresponding to the public key in a revoked certificate shall be considered compromised.

4.2.2 Certification path validation

This section defines an algorithm to validate a certification path that is, e.g., supplied by an ONVIF client to
an ONVIF device.

Algorithm input:

1. Certification path c1,…,cm

2. Current date and time

3. Certification path validation policy

Algorithm output:

• valid if the certification path is considered valid, invalid otherwise.

Algorithm steps:

1. Construct all prospective certification paths c1,…,cn from the input certification path c1,…,cm as specified in
Sect. 4.2.3. If no prospective certification path can be constructed from the input certification path, return
invalid.

2. For all prospective certification paths c1,…,cn

a. Determine whether c1,…,cn is valid by applying the algorithm defined in Sect. 4.2.4 with inputs

• Prospective certification path c1,…,cn

• Current date and time

• Certification path validation policy

b. If c1,…,cn is valid, output valid.

3. Output invalid.

A device that supports certification path validation as defined in this specification shall implement this algorithm.

4.2.3 Construct Prospective Certification Paths

This section defines an algorithm to construct prospective certification paths from an input certification path as
indicated by the certification path validation policy.

ONVIF™ – 11 – Security Configuration – Ver. 24.06

Algorithm input:

1. Certification path c1,…,cm

2. Certification path validation policy

Algorithm output:

1. Prospective certification paths c1,…,cn if at least one prospective certification path exists.

2. NULL if no prospective certification path exists.

Algorithm steps:

1. For all i in {1,…,m} such that ci is considered a trust anchor according to the certification path validation
policy, add c1,…,ci to the set of prospective certification paths.

2. Determine all certification path extensions cm+1,…,cn such that

• for all ci with i in {m+1,…n-1}, the issuer of ci is the subject of ci+1

• cn is considered a trust anchor according to the certification path validation policy

3. Add all extended certification paths c1,…,cm,cm+1,…,cn to the set of prospective certification paths.

4. Return the set of prospective certification paths.

4.2.4 Validate Prospective Certification Path

This section defines an algorithm to validate a prospective certification path.

Algorithm input:

1. Prospective certification path c1,…,cn

2. Current date and time t

3. Certification path validation policy

Algorithm output:

• True if certification path is considered valid under the certification path validation policy, false otherwise.

Algorithm steps:

1. Execute the algorithm specified in RFC 5280, Sect. 6.1, with inputs

a. Prospective certification path cn,…,c1

b. Current date and time t

c. User-initial-policy-set as defined in the certification path validation policy

d. Initial-policy-mapping-inhibit as defined in the certification path validation policy

e. Initial-explicit-policy as defined in the certification path validation policy

f. Initial-any-policy-inhibit as defined in the certification path validation policy

g. Initial-permitted-subtrees as defined in the certification path validation policy

h. Initial-excluded-subtrees as defined in the certification path validation policy

ONVIF™ – 12 – Security Configuration – Ver. 24.06

2. If the output of step (1) contains a success indication, return true. Otherwise, return false.

For determining the revocation status of a given certificate cert (Step (3) in RFC 5280, Sect. 6.1.3) in Step (1),
the device shall use the algorithm defined in Sect. 4.2.5 with inputs

a. Certificate := cert

b. Certification path validation policy

In order to determine whether an X.509 version 1 or version 2 certificate is a CA certificate as required in RFC
5280, Sect. 6.1.4, step (k), the device shall use the source specified in the cA-information-source-for-v1-and-
v2 information of the certification path validation policy.

4.2.5 Determine Certificate Revocation Status

Algorithm input:

1. Certificate cert

2. Certification path validation policy

Algorithm output:

• REVOKED if certificate is considered revoked.

• UNREVOKED if certificate is considered to have been released from hold.

• UNDERTERMINED if the certificate is considered neither revoked nor released from hold.

Algorithm steps:

1. For all CRLs l that shall be considered according to the certification path validation policy, execute the CRL
validation algorithm defined in RFC 5280, Sect. 6.3 with inputs

a. Certificate := the certificate cert

b. use-deltas as defined in the certification path validation policy

2. For all other sources of revocation information to be considered according to the certification path validation
policy, determine the revocation status of the certificate cert based on the certification path validation policy.

3. Combine the outputs of steps (1) and (2) as specified by the certification path validation policy and output
the result.

4.2.6 Certification Path Validation Policy

4.2.6.1 Certification Path Validation Algorithm Parameters

By default, a device shall use the values defined in Table 2 for the algorithm parameters defined in RFC 5280,
Sect. 6.1.1 for the certification path validation algorithm defined in Sect. 4.2.4.

Table 2: Default parameter values for the certification path validation algorithm

Parameter Default Default Value Semantics

User-initial-policy-set Any-policy The device is not concerned about certificate policy.

Initial-policy-map-
ping-inhibit

0 Policy mapping is not inhibited.

Initial-explicit-policy 0 The prospective certification path does not have to be valid for at
least one certificate policy in the user-initial-policy-set

ONVIF™ – 13 – Security Configuration – Ver. 24.06

Parameter Default Default Value Semantics

Initial-any-policy-inhibit 0 The any-policy identifier, if asserted in a certificate, does not have
to be ignored

Initial-permitted-sub-
trees

(not speci-
fied)

No restrictions on the subtree within which all subject names in
every certificate in the prospective certification path must fall.

Initial-excluded-sub-
trees

(not speci-
fied)

No restrictions on the subtree within which no subject names in
any certificate in the prospective certification path may fall.

CA-information-source-
for-v1-and-v2

None The device shall consider X.509 version 1 and version 2 certifi-
cates as non-CA certificates.

4.2.6.2 Revocation Status Checking

By default, a device shall use the parameter values defined in Table 3 for the parameters defined in RFC 5280,
Sect. 6.1.1 for the CRL-based certificate revocation status checking algorithm defined in Sect. 4.2.5.

Table 3: Default parameter values for the revocation status checking algorithm

Parameter Default Default Value Semantics

Use-deltas False Delta CRLs, if available, are applied to CRLs.

Relevant-reason-codes All-reasons The device considers a certificate revoked if it has been
revoked for any reason defined in RFC 5280.

By default, a device shall consider all trusted sources of revocation information that it has access to when
determining the revocation status of a certificate. The device shall consider the certificate in question revoked
if and only if at least one such source indicates that the certificate in question is revoked. If one such source is
unavailable, the device shall behave as if this source had provided the reply UNDETERMINED.

A device shall consider at least the CRLs that are present in the keystore of the device.

By default, certificates that are considered revoked shall not be included in prospective certification paths.

4.2.6.3 Trust Anchors

The trust anchors assigned to the certification path validation policy shall be used as trust anchor input to the
certification path validation algorithm specified in Sect. 4.2.4.

4.2.6.4 Certificate Repository for constructing Certification Paths

By default, the certification path validation algorithm specified in Sect. 4.2.2 shall consider all certificates in the
keystore on the device when constructing prospective certification paths.

4.2.6.5 Specific certification path validation parameters

Table 4 defines additional certification path validation parameters.

Table 4: Specific certification path validation parameters

Parameter Default Default Value Semantics

RequireTLSWWWClientAuthExtendedKeyUsage False If true, a TLS server shall only allow
TLS clients to connect that present
a client certificate containing the Re-
quire WWW client auth extended
key usage extension as specified in
RFC 5280, Sect. 4.2.1.12.

ONVIF™ – 14 – Security Configuration – Ver. 24.06

4.2.7 Validate CRLs

By default, the device shall use the following algorithm to obtain and validate the certification path for a CRL
issuer in Step (f) of the CRL processing algorithm defined in RFC 5280, Sect. 6.3.3.

Algorithm input:

1. CRL

2. Certification path validation policy

Algorithm output: valid if the CRL is considered valid, invalid otherwise

Algorithm steps:

1. Let c1,…,cm denote the certificates in the certificate repository for constructing certification paths as defined
by the certification path validation policy that contain the issuer of l as subject.

2. For each certificate ci

a. Execute the certification path validation algorithm defined in Sect. 4.2.2 with input

• The certification path with ci as the only certificate in the path

• Current time and date

• Certification path validation policy

b. If ci is valid, verify the signature of the CRL with the subject public key in ci.

c. If the signature verification was successful, return valid.

3. Return invalid.

4.3 JWT-based client authorization

Unlike with HTTP Digest and WS-UsernameToken authentication, this specification defines how to associate
clients with the different User Levels as defined in the ONVIF Core Specification. Devices are not expected
to have the user credentials stored in their memory, instead they will verify that the user has been correctly
authenticated by a trusted service based on OpenID Connect and authorize accessing different functions,
based on the claims presented in the supplied JWT. JWTs can be presented as headers in case of HTTPS or
RTSP, or they can be embedded in SOAP messages, in the form of binary security tokens. In case JWTs are
embedded in binary security tokens, their content is base64url-encoded according to RFC 7519.

JWTs consists of three elements:

• JOSE header

• Payload

• Signature

The JOSE header shall declare that the encoded object is a JSON Web Token by setting the typ parameter
to JWT, and the JWT is a JWS that is signed using the algorithm identified by the alg claim with a value de-
fined in RFC7518. Since the keystore does not support symmetric encryption, this specification only mandates
asymmetric encryption.

The JWT payload shall include the following standard claims:

• iss: Issuer, the URI of the server that generated the JWT.

ONVIF™ – 15 – Security Configuration – Ver. 24.06

• aud: Audience, a list of strings representing the recipients that the JWT is intended for. Each principal
intended to process the JWT shall identify itself with a value in the audience claim. If the principal
processing the claim does not identify itself with a value in the audience claim when this claim is
present, then the JWT shall be rejected.

• exp: Expiration Time.

• nbf: Not before.

For the exp, nbf claims, a device shall reject a token when the current time is not within the range of claims nbf
and exp. It shall reject a token when at least one of the claims is missing.

The JWT payload shall include the roles claim, as defined within RFC 7643:

• roles: Access class. One of the authenticated classes of the default access policy prefixed with the
string onvif:, i.e. "onvif:Administrator", "onvif:Operator" or "onvif:User" as defined also within the ONVIF
Core Specification. This access level will be used to authorize access to the required function.

The signature is evaluated by applying ECDSA using secp256r1 and SHA-256 hashing to the base64url-en-
coded header and payload, concatenated by a '.'

ECDSA-SHA256 (base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 secp256r1))

The evaluated signature is further appended to the encoded header and payload with a '.' separator, to get the
final JWT. Appendix Annex B demonstrates the construction or a JWT.

The signature is used to protect the JWT data integrity and JWT source authenticity.

4.3.1 Usage of JWT-based client authentication over HTTP

Since authentication tokens contain sensitive information that could be easily used to perform replay attacks,
JWT-based client authentication shall not be used over unencrypted HTTP connections.

4.3.2 Usage of JWT-based client authentication over HTTPS

Usage JWT-based client authentication over HTTPS shall adhere to the Authorization Request header Field,
as specified by RFC 6750. In case of authentication failure, ONVIF-compliant devices shall respond with the
error codes specified by RFC 6750.

4.3.3 Usage of JWT-based client authentication over SCTP

In scenarios where a SCTP channel is used to exchange commands and responses between the device and
the client, it is not possible to embed a JWT within a header. In this case, the JWT can be embedded in the
Security Token of the SOAP message, as defined in the WS-Security Basic Security Profile.

A client shall use both ValueType and EncodingType. The device shall reject any Binary Security Token not
using both ValueType and EncodingType.

The EncodingType attribute shall have the value of

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#BinarySecurityToken

The ValueType attribute shall have the value of

urn:ietf:params:oauth:token-type:jwt

4.3.4 Usage of JWT-based client authentication over RTSP

Since authentication tokens contain sensitive information that could be easily used to perform replay attacks,
JWT-based client authentication shall be used with RTSP connections only when HTTPS transport is selected.

ONVIF™ – 16 – Security Configuration – Ver. 24.06

4.3.5 Usage of JWT-based client authentication over RTSPS

Since the RTSPS protocol is similar to HTTPS, JWT-based client authentication over RTSPS behaves in the
same way as JWT-based client authentication over HTTPS.

4.4 IEEE 802.1X

IEEE 802.1X is an IEEE standard for port based network access control for the purpose of providing authenti-
cation and authorization of the devices attached to LAN ports. It allows access to the LAN port to devices that
are configured for access, and prevents access to the LAN port to devices that are not correctly configured.

This specification recommends the adoption of IEEE 802.1X for port based authentication for wireless networks.

This specification defines a set of commands to configure and manage a device’s IEEE 802.1X configurations,
both for wireless and hardwired network interfaces. It assumes that IEEE 802.1X configuration and reconfigu-
ration is performed outside of the IEEE 802.1X-secured network.

Many schema elements in this specification include Dot1X as shorthand for IEEE 802.1X. This convention
increases the readability of source code generated from the WSDL.

4.5 Authorization Servers

This section describes use of external authorization servers for authenticating users and controlling access
to resources. It can be used for granting access to both the device itself and to external services, like cloud
storage.

Different approaches are explained for granting access to human users and for machine to machine authoriza-
tion. Both approaches base on OAuth 2.0 as defined in RFC6749. OpenID Connect has been developed as
an extension of OAuth 2.0 especially for granting access to human users.

OAuth 2.0 defines a web API called "authorization endpoint" to retrieve tokens. Clients control the purpose
via scope parameters.

4.5.1 Device authentication and authorization

Devices typically use the Oauth2 Client Credentials Grant Flow as specified by RFC6749 to gain access to
resources. The device (called a client in the OAuth2 Spec) authenticates itself at the authorization server
according to one of the methods listed in Table 7. In case of success the authorization server responds to the
request with an access token that authorizes access to the actual resource.

The Client Credentials Flow is summarized in Figure 1.

Figure 1: OpenID Connect client credentials flow for devices

OAuth 2.0 client registration requires configuration of ClientId, ClientSecret, an authentication method accord-
ing to Table 7plus server dependent supplemental parameters before the client can use the OAuth2.0 and
OpenID Connect flow.

ONVIF™ – 17 – Security Configuration – Ver. 24.06

4.5.2 User authentication and authorization

This flow separates retrieval of access token in two steps to allow separation of authentication and authorization.
Users can retrieve JWTs from an OpenID Connect server by authenticating and authorizing access to resources
by following the OAuth2 Authorization Code Flow.

The Authorization Code Flow is summarized in Figure 2.

Figure 2: OpenID Connect authorization code flow for users

A device can be setup to use JWTs obtained with this flow to allow access to its web interface for externally
authenticated users. In that case an authorization server configuration with type OAuthAuthorizationCode or
OIDC2AuthorizationCode should be created.

Access to the device can be granted to users bearing either an ID Token or an Access Token, as long as the
claims specified in 4.3 are present.

Any request for ID tokens must include openid in the scope request parameter.

4.5.3 Authorization server configuration

The following parameters are used when creating a configuration for an external authorization server.

Table 5: Authorization server settings

Setting Description

ServerUri Authorization server address

ClientId Client identifier issued by the authorization server

ClientSecret Client secret used to authenticate with the authorization server

ONVIF™ – 18 – Security Configuration – Ver. 24.06

Setting Description

Scope The requested access scope(s)

KeyID Key identifier for the private_key_jwt authentication method

CertificateID Certificate identifier for the self_signed_tls_client_auth authentication method

Type The type of configuration, see Table 6 for possible values.

ClientAuth The type of client authentication method to use, see Table 7 for possible values.

The following types of authorization server configurations are defined.

Table 6: Authorization server configuration types

Method Description

OAuthAuthorizationCode OAuth2 authorization code flow per RFC 6749.

OAuthClientCredentials OAuth2 client credentials grant flow per RFC 6749.

OIDC2AuthorizationCode OpenID Connect authorization code flow per Open ID Connect Core.

The ServerUri is used as metadata URI, where you can retrieve the end-
point URIs for authorization, token and JWKS.

The following client authentication methods are defined.

Table 7: Client authentication methods

Method Description

client_secret_basic Use HTTP Authorization header to specify client_secret, see RFC 6749

client_secret_post Use HTTP POST body to specify client_secret, see RFC 6749

client_secret_jwt Use a HMAC signed JWT using client_secret as shared secret during client
registration, see OpenID Connect Core

private_key_jwt Use PKI signed JWT using private key, see OpenID Connect Core, public
key shared with authorization server during client registration

tls_client_auth Use PKI certificate to authenticate, public key shared with authorization
server during client registration and X.509 certificate used to setup mTLS
with authorization server, see RFC 8705

self_signed_tls_client_auth Use self-signed certificate to authenticate, public key shared with autho-
rization server during client registration and self signed certificate used to
setup mTLS with authorization server,see RFC 8705

5 Security Configuration Service

5.1 General Structure

This section covers the security features

• Keystore

• TLS server

• IEEE 802.1X

The design and data model of the ONVIF Security Configuration Service is reflected in Figure 3.

ONVIF™ – 19 – Security Configuration – Ver. 24.06

Figure 3: ONVIF Security Configuration Service UML Class Diagram

5.2 Keystore

5.2.1 Elements of the Keystore

The keystore security feature handles the storage and management of passphrases, keys, and certificates on
an ONVIF device.

The keystore specified in this document supports passphrases, keys, key pairs, RSA and ECC key pairs, which
are particular types of key pairs, certificates, certification paths, certificate revocation lists, and certification path
validation policies.

The boolean attribute externallyGenerated of a key shall be true if and only if the key was generated outside
the device.

The boolean attribute securelyStored of a key shall be true if and only if the key is stored in a specially protected
hardware component (e.g., a trusted platform module) inside the device.

5.2.2 Unique Identifiers

An ID is used to uniquely identify objects of a particular type in the keystore on a device, i.e., no two objects
of the same type shall have the same ID at any time.

Passphrases in the keystore shall be uniquely identified by passphrase IDs, keys shall be uniquely identified
by key IDs, certificates shall be uniquely identified by certificate IDs, certification paths in the keystore shall be
uniquely identified by certification path IDs, certificate revocation lists shall be uniquely identified by certificate

ONVIF™ – 20 – Security Configuration – Ver. 24.06

revocation list IDs, certification path validation policies shall be uniquely identified by certification path validation
policy IDs, and IEEE 802.1X configurations shall be uniquely identified by IEEE 802.1X configuration IDs.

It shall be noted that while IDs within a specific type shall be unique, no requirement exists for the uniqueness
of IDs across different types. For example, there may be a key and a certificate in the keystore that share
the same ID.

Devices may assign the ID of a deleted identified object to another, subsequently generated object. However,
devices should avoid re-using IDs as long as possible to avoid race conditions on the client side.

A client may supply an alias for passphrases, keys, certificates, certification paths, certificate revocation lists,
certification path validation policies and IEEE 802.1X configurations upon creation, e.g., to facilitate recognizing
the created object at a later time. The device shall treat such aliases as unstructured data.

5.2.3 Uniqueness of Objects in the Keystore

A device shall allow multiple copies of the same passphrase to be present in the keystore under different IDs
simultaneously.

A device shall allow multiple copies of the same certificate to be present in the keystore under different IDs,
respectively.

A device shall allow multiple copies of the same certificate revocation list to be present in the keystore under
different IDs, respectively.

A device shall allow multiple copies of the same certification path validation policy to be present in the keystore
under different IDs, respectively.

A device shall allow multiple copies of the same IEEE 802.1X configuration to be present in the keystore under
different IDs simultaneously.

A device shall not allow multiple copies of the same key to be present in the keystore simultaneously.

5.2.4 Referential Integrity

The keystore design relies on associations between

• Keys, especially key pairs, and certificates

• Public keys and private keys in key pairs

• Certificates and certification paths

• Keys and security features

• Certification paths and IEEE 802.1X configurations

• Passphrases and IEEE 802.1X configurations

• IEEE 802.1X configurations and security features

• Certificates and security features

• Certification path validation policies and certificates

• Certificate revocation lists and certificates

• Certification path validation policies and security features

ONVIF™ – 21 – Security Configuration – Ver. 24.06

A device shall enforce the following referential integrity rules for delete operations:

• A key shall not be deleted if it is referenced by a certificate or a security feature.

• A certificate shall not be deleted if it is referenced by a certification path, a certificate revocation list,
a certification path validation policy, or a security feature.

• A certification path shall not be deleted if it is referenced by an IEEE 802.1X configuration or a security
feature.

• A passphrase shall not be deleted if it is referenced by an IEEE 802.1X configuration.

• A certification path validation policy shall not be deleted if it is referenced by a security feature.

• An IEEE 802.1X configuration shall not be deleted if it is referenced by a security feature.

This integrity rule may be enforced by the following mechanism. Reference counters are maintained for keys,
certificates, certification paths, passphrases, and IEEE 802.1X configurations. Each time a reference to an
object of these types is added, e.g., by associating a certificate to a key pair or assigning a key pair or certifi-
cate to a security feature, the reference counter of the object is incremented. Conversely, if a reference to an
object is deleted, the reference counter of the referenced object is decremented. Deleting a key, certificate, or
certification path is only permitted if the corresponding reference counter is equal to zero.

A device shall enforce the following referential integrity rules for update operations:

• A key shall not be updated if it is referenced by a certificate or a security feature. However, a private
key may be added to an existing key pair if the private key matches the public key in the key pair. If
a private key is about to be added to a key pair that already contains the private key to be added, the
adding operation shall have no effect.

• A certificate shall not be updated if it is referenced by a certification path, a certificate revocation list,
a certification path validation policy, or a security feature.

• A certification path validation policy shall not be updated if it is referenced by a security feature.

This specification omits APIs for modifying keys or certificates. If a key or certificate is to be updated, it has to
be deleted and newly generated with the updated information. If other API exists that allows for modification of
keys or certificates, special care shall be taken in order not to break the referential integrity rule.

A device shall enforce the following invariants:

• The private key and the public key in an asymmetric key pair in the keystore shall always match, i.e.,
the asymmetric operation under the public key is the inverse of the corresponding operation under
the private key.

• The public key in a certificate in the keystore and the public key in an associated key pair in the keystore
shall always be equal for all associated key pairs.

5.2.5 Key Status

A key in the keystore is always in exactly one of the following states:

• ok (The key is ready to be used)

• generating (The key is being generated and not yet ready for use)

• corrupt (The key is corrupt and shall not be used, e.g., because it was not properly generated or a
hardware fault corrupted a key that was ready to be used)

ONVIF™ – 22 – Security Configuration – Ver. 24.06

5.2.6 Keystore Operations

5.2.6.1 Passphrase Management

5.2.6.1.1 UploadPassphrase

This operation uploads a passphrase to the keystore of the device.

Passphrases are uniquely identified using passphrase IDs. The device shall generate a new passphrase ID
for the uploaded passphrase.

If the command was successful, the device shall return the ID of the uploaded passphrase.

If the device does not have enough storage capacity for storing the passphrase to be uploaded, the device
shall produce a maximum number of passphrases reached fault and shall not upload the supplied passphrase.

If the device cannot process the passphrase to be uploaded, the device shall produce a BadPassphrase fault
and shall not upload a passphrase.

REQUEST:

• Passphrase - [xs:string]
The passphrase to upload.

• PassphraseAlias - optional [xs:string]
The alias for the passphrase to upload.

RESPONSE:

• PassphraseID - [tas:PassphraseID]
The PassphraseID of the uploaded passphrase.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfPassphrasesReached
The device does not have enough storage space to store the passphrase to be uploaded.

• env:Sender - ter:InvalidArgVal - ter:BadPassphrase
The provided passphrase cannot be processed by the device.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.1.2 GetAllPassphrases

This operation returns information about all passphrases that are stored in the keystore of the device.

This operation may be used, e.g., if a client lost track of which passphrases are present on the device.

If no passphrase is stored on the device, the device shall return an empty list.

REQUEST:

This message is empty.

RESPONSE:

• PassphraseAttribute - optional, unbounded [tas:PassphraseAttribute]
List of passphrase attributes. Each attribute contains information about a passphrase in the keystore.

FAULTS:

None

ONVIF™ – 23 – Security Configuration – Ver. 24.06

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.1.3 DeletePassphrase

This operation deletes a passphrase from the keystore of the device.

Passphrases are uniquely identified using passphrase IDs. If no passphrase is stored under the requested
passphrase ID in the keystore, a device shall produce an invalid passphrase ID fault. If there is a passphrase
under the requested passphrase ID stored in the keystore and the passphrase could not be deleted, a device
shall produce a passphrase deletion failed fault.

After a passphrase is successfully deleted, the device may assign its former ID to other passphrases.

REQUEST:

• PassphraseID - [tas:PassphraseID]
The ID of the passphrase that is to be deleted from the keystore.

RESPONSE:

This message is empty.

FAULTS:

• env:Receiver - ter:Action - ter:PassphraseDeletionFailed
Deleting the passphrase with the requested PassphraseID failed.

• env:Sender - ter:InvalidArgVal - ter:PassphraseID
No passphrase is stored under the requested PassphraseID.

ACCESS CLASS:

UNRECOVERABLE

5.2.6.2 Key Management

5.2.6.2.1 CreateRSAKeyPair

This operation triggers the asynchronous generation of an RSA key pair of a particular keylength (specified as
the number of bits) as specified in RFC 3447, with a suitable key generation mechanism on the device. Keys,
especially RSA key pairs, are uniquely identified using key IDs.

If the device does not have enough storage capacity for storing the key pair to be created, the maximum number
of keys reached fault shall be produced and no key pair shall be generated. Otherwise, the operation generates
a keyID for the new key and associates the generating status to it. Immediately after key generation has started,
the device shall return the keyID to the client and continue to generate the key pair. The client may query the
device with the GetKeyStatus operation (see Sect. 5.2.6.2.4) whether the generation has finished. The client
may also subscribe to Key Status events (see Sect. 5.8.1) to be notified about key status changes.

The device also returns a best-effort estimate of how much time it requires to create the key pair.1 A client
may use this information as an indication how long to wait before querying the device whether key generation
is completed.

After the key has been successfully created, the device shall assign it the ok status. If the key generation fails,
the device shall assign the key the corrupt status.

1Implementors may estimate the key generation time for a fixed key length as the average elapsed time of a number of key generation
operations for this key length.

ONVIF™ – 24 – Security Configuration – Ver. 24.06

REQUEST:

• KeyLength - [xs:nonNegativeInteger]
The length of the key to be created.

• Alias - optional [xs:string]
The client-defined alias of the key.

RESPONSE:

• KeyID - [tas:KeyID]
The key ID of the key pair being generated.

• EstimatedCreationTime - [xs:duration]
Best-effort estimation of how long the key generation will take.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfKeysReached
The keystore does not have enough storage space to store the key pair that has to be generated.

• env:Sender - ter:InvalidArgVal - ter:KeyLength
The specified key length is not supported by the device.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.2.2 CreateECCKeyPair

This operation triggers the asynchronous generation of an ECC key pair using a particular elliptic curve as
specified in RFC 4492, with a suitable key generation mechanism on the device. Keys, especially ECC key
pairs, are uniquely identified using key IDs.

If the device does not have enough storage capacity for storing the key pair to be created, the maximum number
of keys reached fault shall be produced and no key pair shall be generated. Otherwise, the operation generates
a keyID for the new key and associates the generating status to it. Immediately after key generation has started,
the device shall return the keyID to the client and continue to generate the key pair. The client may query the
device with the GetKeyStatus operation (see Sect. 5.2.6.2.4) whether the generation has finished. The client
may also subscribe to Key Status events (see Sect. 5.8.1) to be notified about key status changes.

The device also returns a best-effort estimate of how much time it requires to create the key pair.2 A client
may use this information as an indication how long to wait before querying the device whether key generation
is completed.

After the key has been successfully created, the device shall assign it the ok status. If the key generation fails,
the device shall assign the key the corrupt status.

REQUEST:

• EllipticCurve - [xs:string]
The name of the elliptic curve to be used for generating the ECC keypair. For definitions see IANA
TLS Supported Groups.

• Alias - optional [xs:string]
The client-defined alias of the key.

RESPONSE:

• KeyID - [tas:KeyID]
The key ID of the key pair being generated.

2Implementors may estimate the key generation time for a fixed key length as the average elapsed time of a number of key generation
operations for this key length.

ONVIF™ – 25 – Security Configuration – Ver. 24.06

• EstimatedCreationTime - [xs:duration]
Best-effort estimation of how long the key generation will take.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfKeysReached
The keystore does not have enough storage space to store the key pair that has to be generated.

• env:Sender - ter:InvalidArgVal - ter:UnsupportedEllipticCurve
The specified elliptic curve is not supported by the device.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.2.3 UploadKeyPairInPKCS8

This operation uploads a key pair in a PKCS#8 data structure as specified in [RFC 5958, RFC 5959].

If a passphrase is either directly provided or as ID reference to a previously uploaded passphrase, the device
shall assume that the KeyPair parameter contains an EncryptedPrivateKeyInfo ASN.1 structure that is encrypt-
ed with the given passphrase. In case neither a passphrase nor a passphrase ID is provided the device shall
assume that the KeyPair parameter contains a OneAsymmetricKey ASN.1 structure which contains both the
private key and the corresponding public key.

If the supplied key pair cannot be processed by the device, the device shall produce an UnsupportedPublicK-
eyAlgorithm fault and shall not store the uploaded key pair in the keystore.

Key pairs are uniquely identified using key IDs. If a key pair exists in the keystore with the public key equal to
the public key in the request and this key pair does not contain a private key, the device shall add the supplied
private key to the existing key pair and return the ID of this key pair.

If a key pair exists in the keystore with the public key equal to the public key in the request and this key pair
contains a private key, the device shall leave the key pair unchanged and return the ID of this key pair.

If the existing key pair does not have status ok, the device shall produce an InvalidKeyStatus fault and shall
not modify the existing key pair.

If no key pair exists in the keystore with the public key equal to the public key in the request, the device shall
generate a new key pair with the supplied private key and the supplied public key, status ok and the externally
generated attribute set to true. Furthermore, the device shall return the ID of this key pair.

If a new key pair is created, the device shall assign the supplied alias to it. Otherwise, the device shall ignore
an eventually supplied alias.

If decryption of the EncryptedPrivateKeyInfo failed, the device shall produce a DecryptionFailed fault and shall
not store the uploaded key pair in the keystore.

If the device does not have enough storage capacity for storing the key pair that eventually has to be created,
the device shall generate a maximum number of keys reached fault. Furthermore the device shall not generate
a key pair.

If no passphrase exists under the ID specified by EncryptionPassphraseID, the device shall produce an invalid
passphrase ID fault and shall not store the uploaded key pair in the keystore.

If the supplied PKCS#8 data structure cannot be processed by the device, the device shall produce a BadP-
KCS8File fault and shall not store the uploaded key pair in the keystore.

If the public key in the uploaded key pair does not match the uploaded private key, the device shall produce a
PublicPrivateKeyMismatch fault and shall not store the uploaded key pair in the keystore.

ONVIF™ – 26 – Security Configuration – Ver. 24.06

If the command was successful, the device shall return the ID of the key pair in the keystore that contains the
supplied public and private key.

REQUEST:

• KeyPair - [tas:Base64DERencodedASN1Value]
The key pair to be uploaded in a PKCS#8 data structure.

• Alias - optional [xs:string]
The client-defined alias of the key pair.

• EncryptionPassphraseID - optional [tas:PassphraseID]
The ID of the passphrase to use for decrypting the uploaded key pair.

• EncryptionPassphrase - optional [xs:string]
The passphrase to use for decrypting the uploaded key pair.

RESPONSE:

• KeyID - [tas:KeyID]
The key ID of the uploaded key pair.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfKeysReached
The device does not have enough storage space to store the key pair to be uploaded.

• env:Sender - ter:InvalidArgVal - ter:PassphraseID
No passphrase is stored under the requested PassphraseID.

• env:Sender - ter:InvalidArgVal - ter:DecryptionFailed
The given date could not be decrypted.

• env:Sender - ter:InvalidArgVal - ter:UnsupportedPublicKeyAlgorithm
The public key algorithm of the supplied key pair is not supported by the device.

• env:Sender - ter:InvalidArgVal - ter:InvalidKeyStatus
The key with the requested KeyID has an inappropriate status.

• env:Sender - ter:InvalidArgVal - ter:BadPKCS8File
The PKCS#8 data structure cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:PublicPrivateKeyMismatch
The supplied private key does not match the supplied public key.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.2.4 GetKeyStatus

This operation returns the status of a key as defined in Sect. 5.2.5.

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in the keystore, an
InvalidKeyID fault is produced. Otherwise, the status of the key is returned.

REQUEST:

• KeyID - [tas:KeyID]
The ID of the key for which to return the status.

RESPONSE:

• KeyStatus - [xs:string]
Status of the requested key. The value should be one of the values in the tas:KeyStatus enumeration.

ONVIF™ – 27 – Security Configuration – Ver. 24.06

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:KeyID
No key is stored under the requested KeyID.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.2.5 GetPrivateKeyStatus (deprecated)

This operation returns whether a key pair contains a private key.

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in the keystore, an
invalid key ID fault shall be produced. If a key is stored under the requested key ID in the keystore, but this key
is not a key pair, an invalid key type fault shall be produced.

Otherwise, this operation returns true if the key pair identified by the key ID contains a private key, and false
otherwise.

This command is deprecated. Use GetAllKeys (see Sect. 5.2.6.2.6) instead.

REQUEST:

• KeyID - [tas:KeyID]
The ID of the key pair for which to return whether it contains a private key.

RESPONSE:

• hasPrivateKey - [xs:boolean]
True if and only if the key pair contains a private key.

FAULTS:

• ter:Sender - ter:InvalidArgVal - ter:KeyID
No key is stored under the requested KeyID.

• ter:Sender - ter:InvalidArgVal - ter:InvalidKeyType
The key stored in the keystore under the requested KeyID is of an invalid type.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.2.6 GetAllKeys

This operation returns information about all keys that are stored in the device’s keystore.

This operation may be used, e.g., if a client lost track of which keys are present on the device.

If no key is stored on the device, an empty list is returned.

REQUEST:

This message is empty.

RESPONSE:

• KeyAttribute - optional, unbounded [tas:KeyAttribute]
List of key attributes. Each attribute contains information about a key in the keystore.

FAULTS:

None

ONVIF™ – 28 – Security Configuration – Ver. 24.06

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.2.7 DeleteKey

This operation deletes a key from the device’s keystore.

Keys are uniquely identified using key IDs. If no key is stored under the requested key ID in the keystore, a
device shall produce an InvalidArgVal fault. If a reference exists for the specified key, a device shall produce
the corresponding fault and shall not delete the key. If there is a key under the requested key ID stored in the
keystore and the key could not be deleted, a device shall produce a KeyDeletion fault. If the key has the status
generating, a device shall abort the generation of the key and delete from the keystore all data generated for
this key.

After a key is successfully deleted, the device may assign its former ID to other keys.

REQUEST:

• KeyID - [tas:KeyID]
The ID of the key that is to be deleted from the keystore.

RESPONSE:

This message is empty.

FAULTS:

• ter:Receiver - ter:Action - ter:KeyDeletionFailed
Deleting the key with the requested KeyID failed.

• ter:Sender - ter:InvalidArgVal - ter:KeyID
No key is stored under the requested KeyID.

• ter:Sender - ter:InvalidArgVal - ter:ReferenceExists
A reference exists for the object that is to be deleted.

ACCESS CLASS:

UNRECOVERABLE

5.2.6.3 Certificate Management

5.2.6.3.1 CreatePKCS10CSR

This operation generates a DER-encoded PKCS#10 v1.7 certification request (sometimes also called certificate
signing request or CSR) as specified in RFC 2986 for a public key on the device.

The key pair that contains the public key for which a certification request shall be produced is specified by its
key ID. If no key is stored under the requested KeyID or the key specified by the requested KeyID is not an
asymmetric key pair, an invalid key ID fault shall be produced and no CSR shall be generated.

The subject parameter describes the entity that the public key belongs to. Additional attributes can be included
in the attribute parameter.

Distinguished name attribute values shall be supplied either in UTF-8 or in hexadecimal form as specified in
RFC 4514.

If the distinguished name attribute value is supplied in hexadecimal form, the device shall encode the attribute
in the format given in the hexadecimal format.

If the distinguished name attribute value is supplied in UTF-8 and the attribute value has a uniquely defined
encoding (e.g., CountryName is defined as PrintableString), the device shall encode the attribute as the defined
encoding. Otherwise, the device shall encode the attribute value as UTF-8.

ONVIF™ – 29 – Security Configuration – Ver. 24.06

The signature algorithm parameter determines which signature algorithm shall be used for signing the certifi-
cation request with the public key specified by the key ID parameter. If the specified signature algorithm is not
supported by the device, an UnsupportedSignatureAlgorithm fault shall be produced and no CSR shall be gen-
erated. If the public key identified by the requested Key ID is an invalid input to the specified signature algorithm,
a KeySignatureAlgorithmMismatch fault shall be produced and no CSR shall be generated. If the specified
subject is invalid or incomplete, a Subject invalid fault shall be produced and no CSR shall be created. If an
attribute is invalid or incomplete, an Attribute invalid fault shall be produced and no CSR shall be generated.

If the key pair does not have status ok, a device shall produce an InvalidKeyStatus fault and no CSR shall
be generated.

REQUEST:

• Subject - [tas:DistinguishedName]
The subject to be included in the CSR.

• KeyID - [tas:KeyID]
The ID of the key for which the CSR shall be created.

• CSRAttribute - optional, unbounded [tas:CSRAttribute]
List of CSR attributes. Each attribute contains an attribute to be included in the CSR.

• SignatureAlgorithm - [tas:AlgorithmIdentifier]
The signature algorithm to be used to sign the CSR.

RESPONSE:

• PKCS10CSR - [tas:Base64DERencodedASN1Value]
The DER encoded PKCS#10 certification request.

FAULTS:

• ter:Receiver - ter:Action - CSRCreationFailed
The generation of the PKCS#10 certification request failed.

• ter:Sender - ter:InvalidArgVal - ter:KeyID
No key is stored under the requested KeyID.

• ter:Sender - ter:InvalidArgVal - ter:UnsupportedSignatureAlgorithm
The specified signature algorithm is not supported by the device.

• ter:Sender - ter:InvalidArgVal - ter:KeySignatureAlgorithmMismatch
The specified public key is an invalid input to the specified signature algorithm.

• ter:Sender - ter:InvalidArgVal - ter:InvalidKeyStatus
The key with the requested KeyID has an inappropriate status.

• ter:Sender - ter:InvalidArgVal - ter:InvalidSubject
The specified subject is invalid or incomplete.

• ter:Sender - ter:InvalidArgVal - ter:InvalidAttribute
The specified attribute is invalid or incomplete.

ACCESS CLASS:

READ_SYSTEM

5.2.6.3.2 CreateSelfSignedCertificate

This operation generates for a public key on the device a self-signed X.509 certificate that complies to RFC
5280.

The X509Version parameter specifies the version of X.509 that the generated certificate shall comply to. A
device that supports this command shall support the generation of X.509v3 certificates as specified in RFC

ONVIF™ – 30 – Security Configuration – Ver. 24.06

5280 and may additionally be able to handle other X.509 certificate formats as indicated by the X.509Versions
capability. If no X509Version is specified in the request, the device shall produce an X.509v3 certificate.

The key pair that contains the public key for which a self-signed certificate shall be produced is specified by its
key pair ID. The subject parameter describes the entity that the public key belongs to.

If the key pair does not have status ok, a device shall produce an InvalidKeyStatus fault and no certificate
shall be generated.

If the specified subject is invalid or incomplete, an InvalidSubject fault shall be produced and no certificate
shall be created.

The notValidBefore parameter specifies at which point in time the validity period of the generated certificate
shall begin. If this parameter is not specified in the request, the device shall use its current time or a time
before its current time as starting point of the validity period. The notValidAfter parameter specifies at which
point in time the validity period of the generated certificate shall end. If this parameter is not specified in the
request, the device shall assign the GeneralizedTime value of 99991231235959Z as specified in RFC 5280
to the notValidAfter parameter. If the notValidBefore parameter is invalid, an invalid DateTime fault shall be
produced and no certificate shall be generated. If the notValidAfter parameter is invalid, an invalid DateTime
fault shall be produced and no certificate shall be generated.

The signature algorithm parameter determines which signature algorithm shall be used for signing the certifi-
cation request with the public key specified by the key ID parameter.

The Extensions parameter specifies potential X509v3 extensions that shall be contained in the certificate. A
device that supports this command shall support the extensions that are defined in RFC5280, Sect. 4.2 as
mandatory for CAs that issue self-signed certificates.

Distinguished name attribute values shall be supplied either in UTF-8 or in hexadecimal form as specified in
RFC 4514.

If the distinguished name attribute value is supplied in hexadecimal form, the device shall encode the attribute
in the format given in the hexadecimal format.

If the distinguished name attribute value is supplied in UTF-8 and the attribute value has a uniquely defined
encoding (e.g., CountryName is defined as PrintableString), the device shall encode the attribute as the defined
encoding. Otherwise, the device shall encode the attribute value as UTF-8.

RFC 5280, Sect. 4.1.2.2 mandates that the certificate serial numbers be unique for each certificate issued by a
given issuer (a CA). Since the subject is equal to the issuer in a self-signed certificate, the serial number shall
be unique for each self-signed certificate that the device issues for a given subject.

The generated certificate shall not contain a unique identifier as specified in RFC 5280, Sect. 4.1.2.8. The
device shall not mark the generated certificate as trusted.

Certificates are uniquely identified using certificate IDs. If the command was successful, the device generates
a new ID for the generated certificate and returns this ID.

If the device does not have enough storage capacity for storing the certificate to be created, the maximum
number of certificates reached fault shall be produced and no certificate shall be generated.

REQUEST:

• X509Version - optional [xs:positiveInteger]
The X.509 version that the generated certificate shall comply to.

• Subject - [tas:DistinguishedName]
Distinguished name of the entity that the certificate shall belong to.

• KeyID - [tas:KeyID]
The ID of the key for which the certificate shall be created.

ONVIF™ – 31 – Security Configuration – Ver. 24.06

• Alias - optional [xs:string]
The client-defined alias of the certificate to be created.

• notValidBefore - optional [xs:dateTime]
The X.509 not valid before information to be included in the certificate. Defaults to a time equal to or
before the device’s current time.

• notValidAfter - optional [xs:dateTime]
The X.509 not valid after information to be included in the certificate. Defaults to the time
99991231235959Z as specified in RFC 5280.

• SignatureAlgorithm - [tas:AlgorithmIdentifier]
The signature algorithm to be used for signing the certificate.

• Extension - optional, unbounded [tas:X509v3Extension]
List of X.509v3 extensions to be included in the certificate.

RESPONSE:

• CertificateID - [tas:CertificateID]
The ID of the generated certificate.

FAULTS:

• ter:Receiver - ter:Action - ter:CertificateCreationFailed
The generation of the self-signed certificate failed.

• ter:Receiver - ter:Action - ter:MaximumNumberOfCertificatesReached
The device does not have enough storage space to store the certificate to be created.

• ter:Sender - ter:InvalidArgVal - ter:UnsupportedX509Version
The specified X.509 version is not supported by the device.

• ter:Sender - ter:InvalidArgVal - ter:KeyID
No key is stored under the requested KeyID.

• ter:Sender - ter:InvalidArgVal - ter:UnsupportedSignatureAlgorithm
The specified signature algorithm is not supported by the device.

• ter:Sender - ter:InvalidArgVal - ter:KeySignatureAlgorithmMismatch
The specified public key is an invalid input to the specified signature algorithm.

• ter:Sender - ter:InvalidArgVal - ter:X509VersionExtensionsMismatch
The request contains extensions which are not supported by the X509Version in the request.

• ter:Sender - ter:InvalidArgVal - ter:InvalidKeyStatus
The key with the requested KeyID has an inappropriate status.

• ter:Sender - ter:InvalidArgVal - ter:InvalidSubject
The specified subject is invalid or incomplete.

• ter:Sender - ter:InvalidArgVal - ter:InvalidDateTime
A specified date Time is invalid.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.3.3 UploadCertificate

This operation uploads an X.509 certificate as specified by RFC 5280 in DER encoding and the public key in
the certificate to a device’s keystore. A device that supports this command shall be able to handle X.509v3
certificates as specified in RFC 5280 and may additionally be able to handle other X.509 certificate formats
as indicated by the X.509Versions capability.

ONVIF™ – 32 – Security Configuration – Ver. 24.06

Certificates are uniquely identified using certificate IDs, and key pairs are uniquely identified using key IDs.
The device shall generate a new certificate ID for the uploaded certificate.

Certain certificate usages, e.g. TLS server authentication, require the private key that corresponds to the public
key in the certificate to be present in the keystore. In such cases, the client may indicate that it expects the
device to produce a fault if the matching private key for the uploaded certificate is not present in the keystore
by setting the PrivateKeyRequired argument in the upload request to true.

The uploaded certificate has to be linked to a key pair in the keystore.

If no private key is required for the public key in the certificate and a key pair exists in the keystore with a public
key equal to the public key in the certificate, the uploaded certificate is linked to the key pair identified by the
supplied key ID by adding a reference from the certificate to the key pair.

If no private key is required for the public key in the certificate and no key pair exists with the public key equal to
the public key in the certificate, a new key pair with status ok is created with the public key from the certificate,
and this key pair is linked to the uploaded certificate by adding a reference from the certificate to the key pair.

If a private key is required for the public key in the certificate, and a key pair exists in the keystore with a
private key that matches the public key in the certificate, the uploaded certificate is linked to this key pair by
adding a reference from the certificate to the key pair. If a private key is required for the public key and no such
keypair exists in the keystore, then NoMatchingPrivateKey fault shall be produced and the certificate shall not
be stored in the keystore.

The device shall assign the supplied Alias to the uploaded certificate.

If a new key pair is generated, the device shall assign the supplied KeyAlias to it. Otherwise, the device shall
ignore an eventually supplied KeyAlias.

How the link between the uploaded certificate and a key pair is established is illustrated in Figure 4.

Figure 4: Link establishment between certificate and key pair for Upload Certificate

If the key pair that the certificate shall be linked to does not have status ok, an InvalidKeyStatus fault is produced,
and the uploaded certificate is not stored in the keystore.

ONVIF™ – 33 – Security Configuration – Ver. 24.06

If the signature algorithm that the signature of the supplied certificate is based on is not supported by the device,
the device shall generate an UnsupportedSignatureAlgorithm fault and shall not store the uploaded certificate
nor the contained public key in the keystore.

If the device cannot process the uploaded certificate, a BadCertificate fault is produced and neither the uploaded
certificate nor the public key are stored in the device’s keystore. The BadCertificate fault shall not be produced
based on the mere fact that the device’s current time lies outside the interval defined by the notBefore and
notAfter fields as specified by RFC 5280, Sect. 4.1.

The device shall not mark the uploaded certificate as trusted.

If the device does not have enough storage capacity for storing the certificate to be uploaded, the maximum
number of certificates reached fault shall be produced and no certificate shall be uploaded.

If the device does not have enough storage capacity for storing the key pair that eventually has to be created,
the device shall generate a maximum number of keys reached fault. Furthermore the device shall not generate
a key pair and no certificate shall be stored.

If the command was successful, the device returns the ID of the uploaded certificate and the ID of the key pair
that contains the public key in the certificate.

REQUEST:

• Certificate - [tas:Base64DERencodedASN1Value]
The base64-encoded DER representation of the X.509 certificate to be uploaded.

• Alias - optional [xs:string]
The client-defined alias of the certificate.

• KeyAlias - optional [xs:string]
The client-defined alias of the key pair.

• PrivateKeyRequired - optional [xs:boolean]
Indicates if the device shall verify that a matching key pair with a private key exists in the keystore.

RESPONSE:

• CertificateID - [tas:CertificateID]
The ID of the uploaded certificate.

• KeyID - [tas:KeyID]
The ID of the key that the uploaded certificate certifies.

FAULTS:

• ter:Receiver - ter:Action - ter:MaximumNumberOfCertificatesReached
The device does not have enough storage space to store the certificate to be uploaded.

• ter:Receiver - ter:Action - ter:MaximumNumberOfKeysReached
The device does not have enough storage space to store the key pair to be uploaded.

• ter:Receiver - ter:Action - ter:NoMatchingPrivateKey
The keystore does not contain a key pair with a private key that matches the public key in the uploaded
certificate.

• ter:Sender - ter:InvalidArgVal - ter:BadCertificate
The supplied certificate file cannot be processed by the device.

• ter:Sender - ter:InvalidArgVal - ter:UnsupportedPublicKeyAlgorithm
The public key algorithm of the public key in the certificate is not supported by the device.

• ter:Sender - ter:InvalidArgVal - ter:UnsupportedSignatureAlgorithm
The specified signature algorithm is not supported by the device.

ONVIF™ – 34 – Security Configuration – Ver. 24.06

• ter:Sender - ter:InvalidArgVal - ter:InvalidKeyStatus
The key pair has an inappropriate status.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.3.4 UploadCertificateWithPrivateKeyInPKCS12

This operation uploads a certification path consisting of X.509 certificates as specified by RFC 5280 in DER
encoding along with a private key to a device’s keystore. Certificates and private key are supplied in the form
of a PKCS#12 file as specified in PKCS#12.

The device shall support PKCS#12 files that contain the following safe bags:

• one or more instances of CertBag PKCS#12, Sect. 4.2.3

• either exactly one instance of KeyBag PKCS#12, Sect. 4.3.1 or exactly one instance of PKCS8Shroud-
edKeyBag PKCS#12, Sect. 4.2.2.

If the IgnoreAdditionalCertificates parameter has the value true, the device shall behave as if the client had
supplied only the first CertBag in the sequence of CertBag instances.

The device shall support PKCS#12 passphrase integrity mode for integrity protection of the PKCS#12 PFX as
specified in PKCS#12, Sect. 4. The device shall support PKCS8ShroudedKeyBags that are encrypted with the
same passphrase as the CertBag instances.

If an integrity passphrase ID is supplied, the device shall use the corresponding passphrase in the keystore to
check the integrity of the supplied PKCS#12 PFX. If an integrity passphrase ID is supplied, but the supplied
PKCS#12 PFX has no integrity protection, the device shall produce a BadPKCS12File fault and shall not store
the uploaded certificates nor the uploaded key pair in the keystore.

If an encryption passphrase ID is supplied, the device shall use the corresponding passphrase in the keystore
to decrypt the PKCS8ShroudedKeyBag and the CertBag instances.

If an EncryptionPassphraseID is supplied, but a CertBag is not encrypted, the device shall ignore the sup-
plied EncryptionPassphraseID when processing this CertBag. If an EncryptionPassphraseID is supplied, but
a KeyBag is provided instead of a PKCS8ShroudedKeyBag, the device shall ignore the supplied Encryption-
PassphraseID when processing the KeyBag.

If a passphrase is supplied, the device shall ignore an eventually supplied integrity passphrase ID and an
eventually supplied encryption passphrase ID, and the device shall use the supplied passphrase to check the
integrity of the PKCS#12 PFX and to decrypt the PKCS8ShroudedKeyBag and the CertBag instances. If a
passphrase is supplied, but a CertBag is not encrypted, the device shall ignore the supplied passphrase when
processing this CertBag. If a passphrase is supplied, but a KeyBag is supplied instead of a PKCS8Shrouded-
KeyBag, the device shall ignore the supplied passphrase when processing the KeyBag.

If decryption of either the PKCS8ShroudedKeyBag or an encrypted CertBag failed, the device shall produce a
DecryptionFailed fault and shall not store the uploaded certificates nor key pair in the keystore.

If the signature algorithm of a supplied certificate is not supported by the device, the device shall produce an
UnsupportedSignatureAlgorithm fault and shall not upload a certificate nor key pair.

If the supplied key pair cannot be processed by the device, the device shall produce an UnsupportedPublicK-
eyAlgorithm fault and shall not store the uploaded key pair nor the uploaded certificates in the keystore.

Certificates are uniquely identified using certificate IDs. The device shall store the uploaded certificates in the
keystore and generate a new certificate ID for each of the uploaded certificates.

Certification paths are uniquely identified using certification path IDs. The device shall create a certification
path from the uploaded certificates. In this certification path, the certificates shall appear in the same order as

ONVIF™ – 35 – Security Configuration – Ver. 24.06

in the PKCS#12 file. The device shall generate a new certification path ID for the created certification path and
assign the eventually supplied CertificationPathAlias to the created certification path.

The signature of each certificate in the sequence of uploaded certificates except for the last one shall be
verifiable with the public key contained in the next certificate in the sequence. If there is a certificate in the
request other than the last certificate for which the signature cannot be verified with the public key in the next
certificate, the device shall produce an invalid certification path fault and shall not store the uploaded certificates
nor uploaded private key in the keystore.

If the device cannot process one of the uploaded certificates, it shall produce a BadCertificate fault and neither
store the uploaded certificates nor private key in the keystore. The BadCertificate fault shall not be produced
based on the mere fact that the device’s current time lies outside the interval defined by the notBefore and
notAfter fields as specified by RFC 5280, Sect. 4.1.

The device shall not mark the uploaded certificates as trusted.

The uploaded certificates have to be linked to key pairs in the keystore. Key pairs are uniquely identified using
key IDs.

If a key pair exists in the keystore with the public key equal to the public key in a certificate in the request, the
device shall link the uploaded certificate to the key pair in the keystore by adding a reference from the certificate
to the key pair. If the key pair in the keystore does not contain a private key and the private key contained in
the KeyBag or PKCS8ShroudedKeyBag that matches the public key in the key pair, the device shall add the
private key contained in the KeyBag or PKCS8ShroudedKeyBag to the key pair.

If no key pair exists in the keystore with the public key equal to the public key in a certificate in the request,
the device shall create a new key pair with status ok, externally generated attribute set to true, and the public
and private keys from the request, and shall link this key pair to the uploaded certificate by adding a reference
from the certificate to the key pair.

If a new key pair is created for the uploaded private key, the device shall assign the supplied KeyAlias to it.
Otherwise, the device shall ignore an eventually supplied KeyAlias.

How the link between an uploaded certificate and a key pair is established is illustrated in Figure 5.

Figure 5: Link establishment between certificates and key
pair for Upload Certificate with Private Key in PKCS#12

ONVIF™ – 36 – Security Configuration – Ver. 24.06

If the key pair that a certificate shall be linked to does not have status ok, the device shall produce an invalid
key status fault and shall not store the uploaded certificates nor the uploaded key pair in the keystore.

If the device does not have enough storage capacity for storing the certificates to be uploaded, the device shall
produce a maximum number of certificates reached fault and shall not store the uploaded certificates nor the
uploaded key pair in the keystore.

If the device does not have enough storage capacity for storing the key pair that eventually has to be created,
the device shall generate a maximum number of keys reached fault. Furthermore the device shall not store a
key pair and shall not store the uploaded certificates in the keystore.

If the device does not have enough storage capacity for storing the certification path to be created, the device
shall produce a maximum number of certification paths reached fault and shall not store the uploaded certifi-
cates nor the uploaded key pair in the keystore.

If no passphrase exists under the ID specified by IntegrityPassphraseID, the device shall produce an invalid
passphrase ID fault and shall not store the uploaded certificates nor the uploaded key pair in the keystore.

If no passphrase exists under the ID specified by EncryptionPassphraseID, the device shall produce an invalid
passphrase ID fault and shall not store the uploaded certificates nor the uploaded key pair in the keystore.

If the supplied PKCS#12 data structure cannot be processed by the device, the device shall produce a BadP-
KCS12File fault and shall not store the uploaded certificates nor the uploaded key pair in the keystore.

If the public key in the first uploaded certificate does not match the uploaded private key, the device shall
produce a PublicPrivateKeyMismatch fault and shall not store the uploaded certificates nor the uploaded key
pair in the keystore.

If the command was successful, the device shall return the ID of the created certification path and the ID of
the key pair that contains the public key in the certificate.

REQUEST:

• CertWithPrivateKey - [tas:Base64DERencodedASN1Value]
The certifcates and key pair to be uploaded in a PKCS#12 data structure.

• CertificationPathAlias - optional [xs:string]
The client-defined alias of the certification path.

• KeyAlias - optional [xs:string]
The client-defined alias of the key pair.

• IgnoreAdditionalCertificates - optional [xs:boolean]
True if and only if the device shall behave as if the client had only supplied the first certificate in the
sequence of certificates.

• IntegrityPassphraseID - optional [tas:PassphraseID]
The ID of the passphrase to use for integrity checking of the uploaded PKCS#12 data structure.

• EncryptionPassphraseID - optional [tas:PassphraseID]
The ID of the passphrase to use for decrypting the uploaded PKCS#12 data structure.

• Passphrase - optional [xs:string]
The passphrase to use for integrity checking and decrypting the uploaded PKCS#12 data structure.

RESPONSE:

• CertificationPathID - [tas:CertificationPathID]
The certification path ID of the uploaded certification path.

• KeyID - [tas:KeyID]
The key ID of the uploaded key pair.

ONVIF™ – 37 – Security Configuration – Ver. 24.06

FAULTS:

• ter:Receiver - ter:Action - ter:
MaximumNumberOfCertificatesReached The device does not have enough storage space to store
the certificate to be uploaded.

• ter:Receiver - ter:Action - ter:
MaximumNumberOfKeysReached The device does not have enough storage space to store the key
pair that has to be generated.

• ter:Receiver - ter:Action - ter:
MaximumNumberOfCertificationPathsReached The device does not have enough storage space
to store the certification path to be uploaded.

• ter:Sender - ter:InvalidArgVal - ter:PassphraseID
No passphrase is stored under the requested PassphraseID.

• env:Sender - ter:InvalidArgVal - ter:DecryptionFailed
The given data could not be decrypted.

• env:Sender - ter:InvalidArgVal - ter:BadCertificate
The supplied certificate file cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:UnsupportedPublicKeyAlgorithm
The public key algorithm of the public key in the certificate is not supported by the device.

• env:Sender - ter:InvalidArgVal - ter:UnsupportedSignatureAlgorithm
The signature algorithm that the signature of the supplied certificate is based on is not supported by
the device.

• env:Sender - ter:InvalidArgVal - ter:InvalidKeyStatus
The key with the requested KeyID has an inappropriate status.

• env:Sender - ter:InvalidArgVal - ter:BadPKCS12File
The PKCS#12 data structure cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:PublicPrivateKeyMismatch
The supplied private key does not match the supplied public key.

• env:Sender - ter: InvalidArgVal - ter:InvalidCertificationPath
At least one certificate in the certification path is not correctly signed with the public key in the next
certificate in the path.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.3.5 GetCertificate

This operation returns a specific certificate from the device’s keystore.

Certificates are uniquely identified using certificate IDs. If no certificate is stored under the requested certificate
ID in the keystore, an InvalidArgVal fault is produced.

The certificate shall be returned in DER encoding.

It shall be noted that this command does not return the private key that is associated with the public key in
the certificate.

REQUEST:

• Certificateid - [tas:CertificateID]
The ID of the certificate to retrieve.

ONVIF™ – 38 – Security Configuration – Ver. 24.06

RESPONSE:

• Certificate - [tas:X509Certificate]
The DER representation of the certificate.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertificateID
No certificate is stored under the requested CertificateID.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.3.6 GetAllCertificates

This operation returns all certificates that are stored in the device’s keystore.

This operation may be used, e.g., if a client lost track of which certificates are present on the device.

The certificates shall be returned in DER encoding.

If no certificate is stored in the device’s keystore, an empty list is returned.

REQUEST:

This message is empty.

RESPONSE:

• Certificate - optional, unbounded [tas:X509Certificate]
List of DER representation of certificates stored in the keystore.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.3.7 DeleteCertificate

This operation deletes a certificate from the device’s keystore.

The operation shall not delete the public key that is contained in the certificate from the keystore.

Certificates are uniquely identified using certificate IDs. If no certificate is stored under the requested certificate
ID in the keystore, an InvalidArgVal fault is produced. If there is a certificate under the requested certificate ID
stored in the keystore and the certificate could not be deleted, a CertificateDeletion fault is produced.

If a reference exists for the specified certificate, the certificate shall not be deleted and the corresponding fault
shall be produced.

After a certificate has been successfully deleted, the device may assign its former ID to other certificates.

REQUEST:

• CertificateID - [tas:CertificateID]
The ID of the certificate to delete.

RESPONSE:

This message is empty.

ONVIF™ – 39 – Security Configuration – Ver. 24.06

FAULTS:

• ter:Receiver - ter:Action - ter:CertificateDeletionFailed
Deleting the certificate with the requested CertificateID failed.

• ter:Sender - ter:InvalidArgVal - ter:CertificateID
No certificate is stored under the requested CertificateID.

• ter:Sender - ter:InvalidArgVal - ter:ReferenceExists
A reference exists for the specified certificate.

ACCESS CLASS:

UNRECOVERABLE

5.2.6.3.8 CreateCertificationPath

This operation creates a sequence of certificates that may be used, e.g., for certification path validation or for
TLS server authentication.

Certification paths are uniquely identified using certification path IDs. Certificates are uniquely identified using
certificate IDs. A certification path contains a sequence of certificate IDs.

If there is a certificate ID in the sequence of supplied certificate IDs for which no certificate exists in the device’s
keystore, the corresponding fault shall be produced and no certification path shall be created.

The signature of each certificate in the certification path except for the last one shall be verifiable with the public
key contained in the next certificate in the path. If there is a certificate ID in the request other than the last ID
for which the corresponding certificate cannot be verified with the public key in the certificate identified by the
next certificate ID, an InvalidCertificateChain fault shall be produced and no certification path shall be created.

REQUEST:

• CertificateIDs - [tas:CertificateIDs]
The IDs of the certificates to include in the certification path, where each certificate signature except for
the last one in the path must be verifiable with the public key certified by the next certificate in the path.

• Alias - optional [xs:string]
The client-defined alias of the certification path.

RESPONSE:

• CertificationPathID - [tas:CertificationPathID]
The ID of the generated certification path.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfCertificationPathsReached
The maximum number of certification paths that may be assigned to the TLS server simultaneously
is reached.

• env:Sender - ter:InvalidArgVal - ter:CertificateID
No certificate is stored under the requested CertificateID.

• env:Sender - ter:InvalidArgVal - ter:InvalidCertificationPath
At least one certificate in the certification path is not correctly signed with the public key in the next
certificate in the path.

• env:Receiver - ter:Action - ter:CertificationPathCreationFailed
Creating the certification path failed.

ACCESS CLASS:

WRITE_SYSTEM

ONVIF™ – 40 – Security Configuration – Ver. 24.06

5.2.6.3.9 GetCertificationPath

This operation returns a specific certification path from the device’s keystore.

Certification paths are uniquely identified using certification path IDs. If no certification path is stored under the
requested ID in the keystore, an InvalidArgVal fault is produced.

REQUEST:

• CertificationPathID - [tas:CertificationPathID]
The ID of the certification path to retrieve.

RESPONSE:

• CertificationPath - [tas:CertificationPath]
The certification path that is stored under the given ID in the keystore.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertificationPathID
No certification path is stored under the requested certification path ID.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.3.10 GetAllCertificationPaths

This operation returns the IDs of all certification paths that are stored in the device’s keystore.

This operation may be used, e.g., if a client lost track of which certificates are present on the device.

If no certification path is stored on the device, an empty list is returned.

REQUEST:

This message is empty.

RESPONSE:

• CertificationPathID - optional, unbounded [tas:CertificationPathID]
List of IDs of certification paths stored in the keystore.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.3.11 DeleteCertificationPath

This operation deletes a certification path from the device’s keystore.

This operation shall not delete the certificates that are referenced by the certification path.

Certification paths are uniquely identified using certification path IDs. If no certification path is stored under the
requested certification path ID in the keystore, an InvalidArgVal fault is produced. If there is a certification path
under the requested certification path ID stored in the keystore and the certification path could not be deleted,
a CertificationPathDeletion fault is produced.

If a reference exists for the specified certification path, the certification path shall not be deleted and the cor-
responding fault shall be produced.

ONVIF™ – 41 – Security Configuration – Ver. 24.06

After a certification path is successfully deleted, the device may assign its former ID to other certification paths.

REQUEST:

• CertificationPathID - [tas:CertificationPathID]
The ID of the certification path to delete.

RESPONSE:

This message is empty.

FAULTS:

• ter:Receiver - ter:Action - ter:CertificationPathDeletionFailed
Deleting the certification path with the requested certification path ID failed.

• ter:Sender - ter:InvalidArgVal - ter:CertificationPathID
No certification path is stored under the requested certification path ID.

• ter:Sender - ter:InvalidArgVal - ter:ReferenceExists
A reference exists for the object that is to be deleted.

ACCESS CLASS:

UNRECOVERABLE

5.2.6.4 CRL Management

5.2.6.4.1 UploadCRL

This operation uploads a certificate revocation list (CRL) as specified in RFC 5280 to the keystore on the device.

If the device does not have enough storage space to store the CRL to be uploaded, the device shall produce
a MaximumNumberOfCRLsReached fault and shall not store the supplied CRL.

If the device is not able to process the supplied CRL, the device shall produce a BadCRL fault and shall not
store the supplied CRL.

If the device does not support the signature algorithm that was used to sign the supplied CRL, the device shall
produce an UnsupportedSignatureAlgorithm fault and shall not store the supplied CRL.

REQUEST:

• Crl - [tas:Base64DERencodedASN1Value]
The CRL to be uploaded to the device.

• Alias - optional [xs:string]
The alias to assign to the uploaded CRL.

• anyParameters - optional, unbounded [xs:any]

RESPONSE:

• CrlID - [tas:CRLID]
The ID of the uploaded CRL.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfCRLsReached
The device does not have enough storage space to store the CRL to be uploaded.

• env:Sender - ter:InvalidArgVal - ter:BadCRL
The supplied CRL cannot be processed by the device.

ONVIF™ – 42 – Security Configuration – Ver. 24.06

• env:Sender - ter:InvalidArgVal - ter:UnsupportedSignatureAlgorithm
The specified signature algorithm is not supported by the device.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.4.2 GetCRL

This operation returns a specific certificate revocation list (CRL) from the keystore on the device.

Certification revocation lists are uniquely identified using CRLIDs. If no CRL is stored under the requested
CRLID, the device shall produce a CRLID fault.

REQUEST:

• CrlID - [tas:CRLID]
The ID of the CRL to be returned.

RESPONSE:

• Crl - [tas:CRL]
The CRL with the requested ID.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CRLID
No CRL is stored under the requested CRL ID.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.4.3 GetAllCRLs

This operation returns all certificate revocation lists (CRLs) that are stored in the keystore on the device.

If no certificate revocation list is stored in the device’s keystore, an empty list is returned.

REQUEST:

This message is empty.

RESPONSE:

• Crl - optional, unbounded [tas:CRL]
A list of all CRLs that are stored in the keystore on the device.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.4.4 DeleteCRL

This operation deletes a certificate revocation list (CRL) from the keystore on the device.

Certification revocation lists are uniquely identified using CRLIDs. If no CRL is stored under the requested
CRLID, the device shall produce a CRLID fault.

If a reference exists for the specified CRL, the device shall produce a ReferenceExists fault and shall not delete
the CRL.

ONVIF™ – 43 – Security Configuration – Ver. 24.06

After a CRL has been successfully deleted, a device may assign its former ID to other CRLs.

REQUEST:

• CrlID - [tas:CRLID]
The ID of the CRL to be deleted.

RESPONSE:

This message is empty.

FAULTS:

• ter:Sender - ter:InvalidArgVal - ter:CRLID
No CRL is stored under the requested CRL ID.

• ter:Sender - ter:InvalidArgVal - ter:ReferenceExists
A reference exists for the object that is to be deleted.

ACCESS CLASS:

UNRECOVERABLE

5.2.6.5 Certification Path Validation Policy Management

5.2.6.5.1 CreateCertPathValidationPolicy

This operation creates a certification path validation policy.

Certification path validation policies are uniquely identified using certification path validation policy IDs. The
device shall generate a new certification path validation policy ID for the created certification path validation
policy.

For the certification path validation parameters that are not represented in the certPathValidationParameters
data type, the device shall use the default values specified in Sect. 3.

If the device does not have enough storage capacity for storing the certification path validation policy to be
created, the device shall produce a maximum number of certification path validation policies reached fault and
shall not create a certification path validation policy.

If there is at least one trust anchor certificate ID in the request for which there exists no certificate in the device’s
keystore, the device shall produce a CertificateID fault and shall not create a certification path validation policy.

If the device cannot process the supplied certification path validation parameters, the device shall produce a
CertPathValidationParameters fault and shall not create a certification path validation policy.

REQUEST:

• Alias - optional [xs:string]
The alias to assign to the created certification path validation policy.

• Parameters - [tas:CertPathValidationParameters]
The parameters of the certification path validation policy to be created.

• TrustAnchor - unbounded [tas:TrustAnchor]
The trust anchors of the certification path validation policy to be created.

• anyParameters - optional [xs:any]

RESPONSE:

• CertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the created certification path validation policy.

ONVIF™ – 44 – Security Configuration – Ver. 24.06

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfCertPathValidationPoliciesReached
The device does not have enough storage to store the certification path validation policy to be created.

• env:Sender - ter:InvalidArgVal - ter:CertificateID
No certificate is stored under the requested CertificateID.

• env:Sender - ter:InvalidArgVal - ter:CertPathValidationParameters
The specified certification path validation parameters are invalid.

ACCESS CLASS:

WRITE_SYSTEM

5.2.6.5.2 GetCertPathValidationPolicy

This operation returns a certification path validation policy from the keystore on the device.

Certification path validation policies are uniquely identified using certification path validation policy IDs. If no
certification path validation policy is stored under the requested certification path validation policy ID, the device
shall produce a CertPathValidationPolicyID fault.

REQUEST:

• CertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the certification path validation policy to be created.

RESPONSE:

• CertPathValidationPolicy - [tas:CertPathValidationPolicy]
The certification path validation policy that is stored under the requested ID.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertPathValidationPolicyID
No certification path validation policy is stored under the requested certification path validation policy
ID.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.2.6.5.3 GetAllCertPathValidationPolicies

This operation returns all certification path validation policies that are stored in the keystore on the device.

If no certification path validation policy is stored in the device’s keystore, an empty list is returned.

REQUEST:

This message is empty.

RESPONSE:

• CertPathValidationPolicy - optional, unbounded - [tas:CertPathValidationPolicy]
A list of all certification path validation policies that are stored in the keystore on the device.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

ONVIF™ – 45 – Security Configuration – Ver. 24.06

5.2.6.5.4 DeleteCertPathValidationPolicy

This operation deletes a certification path validation policy from the keystore on the device.

Certification path validation policies are uniquely identified using certification path validation policy IDs. If no
certification path validation policy is stored under the requested certification path validation policy ID, the device
shall produce an CertPathValidationPolicyID fault.

If a reference exists for the requested certification path validation policy, the device shall produce a Reference-
Exists fault and shall not delete the certification path validation policy.

After the certification path validation policy has been deleted, the device may assign its former ID to other
certification path validation policies.

REQUEST:

• CertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the certification path validation policy to be deleted.

RESPONSE:

This message is empty.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertPathValidationPolicyID
No certification path validation policy is stored under the requested certification path validation policy
ID.

• ter:Sender - ter:InvalidArgVal - ter:ReferenceExists
A reference exists for the object that is to be deleted.

ACCESS CLASS:

UNRECOVERABLE

5.3 TLS Server

5.3.1 Elements of the TLS Server

The TLS server security feature implements a TLS server as specified in RFC 2246 and subsequent specifi-
cations.

This specification defines how to manage the associations between certification paths and the TLS server. All
other TLS server configuration actions are outside the scope of this specification. In particular, enabling and
disabling the TLS server on the device shall be performed using the device management service specified in
the ONVIF Core Specification.

5.3.2 Authorization of TLS authenticated connections

If TLS client authentication is enabled, connections shall be authenticated as specified in RFC 2246, and the
device shall before all validate the client TLS certificate. In case of invalid certificate the TLS connection shall
be terminated and the device shall ignore any other credentials received on HTTP or WS layer.

Once a service request is authenticated on the TLS layer, the device shall decide based on its access policy
whether the requestor is authorized to receive the service. In order to authorize the requestor, additional infor-
mation for the device is required.

If CnMapsToUser is true, the name of the user requiring access to the device shall be presented in the Common
Name (CN) attribute of the certificate presented by the client to the device. The device shall validate the provided

ONVIF™ – 46 – Security Configuration – Ver. 24.06

username against its set of credentials, and grant access to the requested function in case of success. If the
user is not allowed to access the function, the device shall return a 403 Forbidden.

If CnMapsToUser is false, from this point forward the authorization procedure follows what is specified in the
ONVIF Core Specification as part of the security service.

The authentication and authorization process and falling back to the ONVIF Core Specification is illustrated
in Figure 6.

.

No

No

No

No

Yes

Yes

Yes

ClientAuthentication
Required ?

X.509 certificate valid ?

Is the user allowed to
access the function?

Authorization successfulHandle according to the
[ONVIF Core Specification]

CnMapsToUser?

Yes

403 Forbidden

Yes

TLS Termination

Figure 6: Authentication and authorization flow chart and
fallback mechanism to the ONVIF Core Specification.

5.3.3 TLS Server Operations

5.3.3.1 AddServerCertificateAssignment

This operation assigns a key pair and certificate along with a certification path (certificate chain) to the TLS
server on the device. The TLS server shall use this information for key exchange during the TLS handshake,
particularly for constructing server certificate messages as specified in RFC 4346, RFC 2246.

ONVIF™ – 47 – Security Configuration – Ver. 24.06

Certification paths are identified by their certification path IDs in the keystore. The first certificate in the certifi-
cation path shall be the TLS server certificate.

Since each certificate has exactly one associated key pair, a reference to the key pair that is associated with
the server certificate is not supplied explicitly. Devices shall obtain the private key or results of operations under
the private key by suitable internal interaction with the keystore.

If a device chooses to perform a TLS key exchange based on the supplied certification path, it shall use the
key pair that is associated with the server certificate for key exchange and transmit the certification path to TLS
clients as-is, i.e., the device shall not check conformance of the certification path to RFC 4346, RFC 2246.

In order to use the server certificate during the TLS handshake, the corresponding private key is required.
Therefore, if the key pair that is associated with the server certificate, i.e., the first certificate in the certification
path, does not have an associated private key, the NoPrivateKey fault is produced and the certification path
is not associated with the TLS server.

A TLS server may present different certification paths to different clients during the TLS handshake instead of
presenting the same certification path to all clients. Therefore more than one certification path may be assigned
to the TLS server. If the maximum number of certification paths that may be assigned to the TLS server simul-
taneously is reached, the device shall generate a MaximumNumberOfTLSCertificationPathsReached fault and
the requested certification path shall not be assigned to the TLS server.

If the certification path identified by the supplied certification path ID is already assigned to the TLS server,
this command shall have no effect.

REQUEST:

• CertificationPathID - [tas:CertificationPathID]
The ID of the certification path to assign to the TLS server.

RESPONSE:

This message is empty.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertificationPathID
No certification path is stored in the keystore under the given certification path ID.

• env:Sender - ter:InvalidArgVal - ter:NoPrivateKey
The key pair that is associated with the first certificate in the certificate chain does not have an asso-
ciated private key.

• env: Receiver - ter: Action - ter:MaximumNumberOfTLSCertificationPathsReached
The maximum number of certification paths that may be assigned to the TLS server simultaneously
is reached.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.2 RemoveServerCertificateAssignment

This operation removes a key pair and certificate assignment (including certification path) to the TLS server
on the device.

Certification paths are identified using certification path IDs. If the supplied certification path ID is not associated
with the TLS server, an InvalidArgVal fault is produced.

If the TLS server on the device is enabled, the device shall produce a ReferenceExists fault and shall not
remove the server certificate assignment.

ONVIF™ – 48 – Security Configuration – Ver. 24.06

REQUEST:

• CertificationPathID - [tas:CertificationPathID] The ID of the certification path to remove from
the TLS server.

RESPONSE:

This message is empty.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:OldCertificationPathID
No certification path under the given certification path ID is associated with the TLS server.

• env:Sender - ter:InvalidArgVal - ter:ReferenceExists
A reference exists for the object that is to be deleted.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.3 ReplaceServerCertificateAssignment

This operation replaces an existing key pair and certificate assignment to the TLS server on the device by a
new key pair and certificate assignment (including certification paths).

After the replacement, the TLS server shall use the new certificate and certification path exactly in those cases in
which it would have used the old certificate and certification path. Therefore, especially in the case that several
server certificates are assigned to the TLS server, clients that wish to replace an old certificate assignment
by a new assignment should use this operation instead of a combination of the Add TLS Server Certificate
Assignment and the Remove TLS Server Certificate Assignment operations.

Certification paths are identified using certification path IDs. If the supplied old certification path ID is not asso-
ciated with the TLS server, or no certification path exists under the new certification path ID, the corresponding
InvalidArgVal faults are produced and the associations are unchanged.

The first certificate in the new certification path shall be the TLS server certificate.

Since each certificate has exactly one associated key pair, a reference to the key pair that is associated with
the new server certificate is not supplied explicitly. Devices shall obtain the private key or results of operations
under the private key by suitable internal interaction with the keystore.

If a device chooses to perform a TLS key exchange based on the new certification path, it shall use the key
pair that is associated with the server certificate for key exchange and transmit the certification path to TLS
clients as-is, i.e., the device shall not check conformance of the certification path to RFC 4346, RFC 2246.

In order to use the server certificate during the TLS handshake, the corresponding private key is required.
Therefore, if the key pair that is associated with the server certificate, i.e., the first certificate in the certification
path, does not have an associated private key, the NoPrivateKey fault is produced and the certification path
is not associated with the TLS server.

REQUEST:

• OldCertificationPathID - [tas:CertificationPathID]
The ID of the certification path to remove from the TLS server.

• NewCertificationPathID - [tas:CertificationPathID]
The ID of the certification path to assign to the TLS server.

RESPONSE:

This message is empty.

ONVIF™ – 49 – Security Configuration – Ver. 24.06

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:OldCertificationPathID
No certification path under the given certification path ID is associated with the TLS server.

• env:Sender - ter:InvalidArgVal - ter:NewCertificationPathID
No certification path is stored in the keystore under the given certification path ID.

• env:Sender - ter:InvalidArgVal - ter:NoPrivateKey
The key pair that is associated with the first certificate in the certificate chain does not have an asso-
ciated private key.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.4 GetAssignedServerCertificates

This operation returns the IDs of all certification paths that are assigned to the TLS server on the device.

This operation may be used, e.g., if a client lost track of the certification path assignments on the device.

If no certification path is assigned to the TLS server, an empty list is returned.

REQUEST:

This message is empty.

RESPONSE:

• CertificationPathID - optional, unbounded [tas:CertificationPathID]
List of certification path IDs assigned to the TLS server.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.3.3.5 SetClientAuthenticationRequired

This operation activates or deactivates TLS client authentication for the TLS server on the device.

The TLS server on the device shall require client authentication if and only if clientAuthenticationRequired is
set to true.

If TLS client authentication is requested to be enabled and no certification path validation policy is assigned to
the TLS server, the device shall return an EnablingClientAuthenticationFailed fault and shall not enable TLS
client authentication.

The device shall execute this command regardless of the TLS enabled/disabled state configured in the ONVIF
Device Management Service.

REQUEST:

• clientAuthenticationRequired - [xs:boolean]
Define whether TLS client authentication is active on the device.

RESPONSE:

This message is empty.

ONVIF™ – 50 – Security Configuration – Ver. 24.06

FAULTS:

• env:Receiver - ter:ActionNotSupported - ter:EnablingClientAuthenticationFailed
The device does not support TLS client authentication, or TLS client authentication is not configured
appropriately.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.6 GetClientAuthenticationRequired

This operation returns whether TLS client authentication is active.

REQUEST:

This message is empty.

RESPONSE:

• clientAuthenticationRequired - [xs:boolean]
Report whether TLS client authentication is active on the device.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM

5.3.3.7 SetCnMapsToUser

This operation enables or disables mapping of the Common Name present in the TLS client certificate to an
existing user name in the device.

The TLS server on the device shall perform mapping if parameter clientAuthenticationRequired is set to true.

REQUEST:

• cnMapsToUser - [xs:boolean]
A request for the device to enable or disable Common Name Mapping to User.

RESPONSE:

This message is empty.

FAULTS:

• env:Receiver - ter:ActionNotSupported - ter:CnMapsToUserFailed
The device does not support TLS client authentication, or TLS client authentication is not configured
appropriately.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.8 GetCnMapsToUser

This operation returns whether the Common Name Mapping to User is enabled.

REQUEST:

This message is empty.

ONVIF™ – 51 – Security Configuration – Ver. 24.06

RESPONSE:

• cnMapsToUser - [xs:boolean]
Whether cnMapsToUser is enabled.

FAULTS:

• None

ACCESS CLASS:

READ_SYSTEM

5.3.3.9 AddCertPathValidationPolicyAssignment

This operation assigns a certification path validation policy to the TLS server on the device. The TLS server shall
enforce the policy when authenticating TLS clients and consider a client authentic if and only if the algorithm
defined in Sect. 4.2.2 returns valid.

If no certification path validation policy is stored under the requested CertPathValidationPolicyID, the device
shall produce a CertPathValidationPolicyID fault.

A TLS server may use different certification path validation policies to authenticate clients. Therefore more
than one certification path validation policy may be assigned to the TLS server. If the maximum number of
certification path validation policies that may be assigned to the TLS server simultaneously is reached, the
device shall produce a MaximumNumberOfTLSCertPathValidationPoliciesReached fault and shall not assign
the requested certification path validation policy to the TLS server.

REQUEST:

• CertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the certification path validation policy to assign to the TLS server.

RESPONSE:

This message is empty.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertPathValidationPolicyID
No certification path validation policy is stored under the requested CertPathValidationPolicyID.

• env:Receiver - ter:Action - ter:MaximumNumberOfTLSCertPathValidationPoliciesReached
The maximum number of certification path validation policies that may be assigned to the TLS server
simultaneously is reached.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.10 RemoveCertPathValidationPolicyAssignment

This operation removes a certification path validation policy assignment from the TLS server on the device.

If the certification path validation policy identified by the requested CertPathValidationPolicyID is not associated
to the TLS server, the device shall produce a CertPathValidationPolicyID fault.

REQUEST:

• CertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the certification path validation policy to remove from the TLS server.

ONVIF™ – 52 – Security Configuration – Ver. 24.06

RESPONSE:

This message is empty.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:CertPathValidationPolicyID
No certification path validation policy is stored under the requested CertPathValidationPolicyID.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.11 ReplaceCertPathValidationPolicyAssignment

This operation replaces a certification path validation policy assignment to the TLS server on the device with
another certification path validation policy assignment.

If the certification path validation policy identified by the requested OldCertPathValidationPolicyID is not asso-
ciated to the TLS server, the device shall produce an OldCertPathValidationPolicyID fault and shall not asso-
ciate the certification path validation policy identified by the NewCertPathValidationPolicyID to the TLS server.

If no certification path validation policy exists under the requested NewCertPathValidationPolicyID in the de-
vice’s keystore, the device shall produce a NewCertPathValidationPolicyID fault and shall not remove the as-
sociation of the old certification path validation policy to the TLS server.

REQUEST:

• OldCertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the certification path validation policy to remove from the TLS server.

• NewCertPathValidationPolicyID - [tas:CertPathValidationPolicyID]
The ID of the certification path validation policy to assign to the TLS server.

• RESPONSE:
This message is empty.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:OldCertPathValidationPolicyID
No certification path validation policy under the given OldCertPathValidationPolicyID is associated with
the TLS server.

• env:Sender - ter:InvalidArgVal - ter:NewCertPathValidationPolicyID
No certification path validation policy under the given NewCertPathValidationPolicyID is stored in the
device’s keystore.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.12 GetAssignedCertPathValidationPolicies

This operation returns the IDs of all certification path validation policies that are assigned to the TLS server
on the device.

REQUEST:

This message is empty.

RESPONSE:

• CertPathValidationPolicyID - optional, unbounded [tas:CertPathValidationPolicyID]
List of certification path validation policy IDs assigned to the TLS server.

ONVIF™ – 53 – Security Configuration – Ver. 24.06

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.3.3.13 SetEnabledTLSVersions

This operation sets the version(s) of TLS which the device shall use. Valid values are taken from the
TLSServerSupported capability.

A client initiates a TLS session by sending a ClientHello with the highest TLS version it supports. This suggests
to the server that the client can accept any TLS version up to and including that version.

The server then chooses the TLS version to use. This is generally the highest TLS version the server supports
that is within the range of the client. For example, if a ClientHello indicates TLS version 1.1, the server can
proceed with TLS 1.0 or TLS 1.1.

In the event that an ONVIF installation wishes to disable certain version(s) of TLS, it may do so with this
operation. For example, to disable TLS 1.0 on a device signaling support for TLS versions 1.0, 1.1, and 1.2, the
enabled version list may be set to "1.1 1.2", omitting 1.0. If a client then attempts to connect with a ClientHello
containing TLS 1.0, the server shall send a "protocol_version" alert message and close the connection. This
handshake indicates to the client that TLS 1.0 is not supported by the server. The client must try again with
a higher TLS version suggestion.

An empty version list is not permitted. Disabling all versions of TLS is not the intent of this operation. See
AddServerCertificateAssignment and RemoveServerCertificateAssignment.

A device signalling support for TLS version enabling with the EnabledVersionsSupported capability shall sup-
port this command.

REQUEST:

• Versions - [tas:TLSVersions]
Space-delimited list of TLS versions to allow.

RESPONSE:

This is an empty message.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:EmptyList
The version list is empty.

• env:Sender - ter:InvalidArgVal - ter:TLSVersion
A version is not recognized.

ACCESS CLASS:

WRITE_SYSTEM

5.3.3.14 GetEnabledTLSVersions

This operation retrieves the version(s) of TLS which are currently enabled on the device. A device signalling
support for TLS version enabling with the EnabledVersionsSupported capability shall support this command.

REQUEST:

This is an empty message.

ONVIF™ – 54 – Security Configuration – Ver. 24.06

RESPONSE:

• Versions - [tas:TLSVersions]
Space-delimited list of enabled TLS versions.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM

5.4 IEEE 802.1X

5.4.1 AddDot1XConfiguration

This operation adds an IEEE 802.1X configuration to the device.

Configurations are uniquely identified using IEEE 802.1X configuration IDs. The device shall ignore Dot1XID
in the request, if present, and shall generate a unique configuration ID for the added configuration.

If the command was successful, the device shall return the ID of the configuration.

If the device does not have capacity for the configuration, the device shall produce a MaximumNumberOf-
Dot1XConfigurationsReached fault and shall not add the configuration.

If Identity is used as an anonymous identity for the corresponding authentication method, the device shall
ignore an eventually supplied passphrase ID in the same Dot1XStage. Otherwise, if the device cannot process
a passphrase ID included in the configuration to be added, the device shall produce a PassphraseID fault and
shall not add the configuration.

If the device cannot process a certification path ID included in the configuration to be added, the device shall
produce a CertificationPathID fault and shall not add the configuration.

If the device cannot process an authentication method included in the configuration to be added (e.g., unrec-
ognized method or missing configuration parameter), the device shall produce a Dot1XMethod fault and shall
not add the configuration.

If the device cannot process the authentication method combination in the configuration to be added, the device
shall produce a Dot1XMethodCombination fault and shall not add the configuration.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

• Dot1XConfiguration - [tas:Dot1XConfiguration]
The desired 802.1X configuration.

• Alias - optional [xs:string]
The client-defined alias of the 802.1X configuration.

RESPONSE:

• Dot1XID - [tas:Dot1XID]
The unique identifier of the created 802.1X configuration.

FAULTS:

• env:Receiver - ter:Action - ter:MaximumNumberOfDot1XConfigurationsReached
The device already has the number of configurations specified by MaximumNumberOfDot1XConfigu-
rations.

ONVIF™ – 55 – Security Configuration – Ver. 24.06

• env:Sender - ter:InvalidArgVal - ter:PassphraseID
A supplied passphrase ID cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:CertificationPathID
A supplied certification path ID cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:Dot1XMethod
A supplied IEEE 802.1X authentication method cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:Dot1XMethodCombination
The combination of IEEE 802.1X authentication methods cannot be processed by the device.

ACCESS CLASS:

WRITE_SYSTEM

5.4.2 GetAllDot1XConfigurations

This operation returns details of all IEEE 802.1X configurations that are on the device. This operation may be
used, e.g., if a client lost track of which IEEE 802.1X configurations are present on the device.

If no IEEE 802.1X configurations exist on the device, an empty list is returned.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

This is an empty message.

RESPONSE:

• Configuration - optional, unbounded [tas:Dot1XConfiguration]
The list of 802.1X configurations on the device.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.4.3 GetDot1XConfiguration

This operation returns details of a specific IEEE 802.1X configuration on the device.

If the device cannot process the provided IEEE 802.1X configuration ID, the device shall produce a Dot1X-
ConfigurationID fault.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

• Dot1XID - [tas:Dot1XID]
The unique identifier of the desired 802.1X configuration.

RESPONSE:

• Dot1XConfiguration - [tas:Dot1XConfiguration]
The 802.1X configuration, without password information.

ONVIF™ – 56 – Security Configuration – Ver. 24.06

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:Dot1XConfigurationID
The supplied IEEE 802.1X configuration ID cannot be processed by the device.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.4.4 DeleteDot1XConfiguration

This operation deletes an IEEE 802.1X configuration from the device.

If the device cannot process the provided IEEE 802.1X configuration ID, the device shall produce a Dot1X-
ConfigurationID fault.

If a reference exists for the specified IEEE 802.1X configuration, the device shall produce a ReferenceExists
fault and shall not delete the configuration.

After an IEEE 802.1X configuration has been successfully deleted, the device may assign its former ID to a
new configuration.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

• Dot1XID - [tas:Dot1XID]
The unique identifier of the 802.1X configuration to be deleted.

RESPONSE:

This is an empty message.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:Dot1XConfigurationID
The supplied IEEE 802.1X configuration ID cannot be processed by the device.

• env:Sender - ter:InvalidArgVal - ter:ReferenceExists
A network interface reference exists for the specified IEEE 802.1X configuration.

ACCESS CLASS:

UNRECOVERABLE

5.4.5 SetNetworkInterfaceDot1XConfiguration

This operation binds an IEEE 802.1X configuration to a network interface on the device. This operation shall
either create a new binding or replace an existing binding. On failure when an existing binding already exists,
the existing binding shall remain.

The Device Management SetNetworkInterface operation provides a method of binding an IEEE 802.1X con-
figuration to an IEEE 802.11 (wireless) interface, and that operation may still be used. But there is no ability for
SetNetworkInterface to bind an IEEE 802.1X configuration to a hardwired interface. This operation is provided
to bind an IEEE 802.1X configuration to either type of interface.

If SetNetworkInterfaceDot1XConfiguration is used to bind an IEEE 802.1X configuration to an IEEE 802.11
(wireless) interface, then the DeviceManagement GetNetworkInterfaces operation shall return the IEEE 802.1X
configuration ID along with the rest of that interface’s configuration information.

If the device cannot process the provided network interface token, the device shall produce an InvalidNet-
workInterface fault.

ONVIF™ – 57 – Security Configuration – Ver. 24.06

If the device cannot process the provided IEEE 802.1X configuration ID, the device shall produce a Dot1X-
ConfigurationID fault.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

• token - [xs:string]
The unique identifier of the Network Interface on which the 802.1X configuration is to be set. (NOTE:
the network interface token is defined in devicemgmt.wsdl as tt:ReferenceToken, which is a derived
type of xs:string. To avoid importing all of common.xsd for this single type, the base type is used here.)

• Dot1XID - [tas:Dot1XID]
The unique identifier of the 802.1X configuration to be set.

RESPONSE:

• RebootNeeded - [xs:boolean]
Indicates whether or not a reboot is required after configuration updates.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:InvalidNetworkInterface
The supplied network interface token does not exist.

• env:Sender - ter:InvalidArgVal - ter:Dot1XConfigurationID
The supplied IEEE 802.1X configuration ID cannot be processed by the device.

ACCESS CLASS:

WRITE_SYSTEM

5.4.6 GetNetworkInterfaceDot1XConfiguration

This operation returns the IEEE 802.1X ID and configuration associated with a network interface on the device.
If there is no IEEE 802.1X configuration associated with the specified network interface, then the response
shall be empty.

If the Device Management SetNetworkInterface operation was used to bind an IEEE 802.1X configuration to
an IEEE 802.11 (wireless) interface, then this operation shall return the IEEE 802.1X configuration information
as if the SetNetworkInterfaceDot1XConfiguration operation had been used.

If the device cannot process the provided network interface token, the device shall produce an InvalidNet-
workInterface fault.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

• token - [xs:string]
The unique identifier of the Network Interface for which the 802.1X configuration is to be retrieved.
(NOTE: the network interface token is defined in devicemgmt.wsdl as tt:ReferenceToken, which is a
derived type of xs:string. To avoid importing all of common.xsd for this single type, the base type is
used here.)

RESPONSE:

• Dot1XID - optional [tas:Dot1XID]
The unique identifier of 802.1X configuration assigned to the Network Interface.

ONVIF™ – 58 – Security Configuration – Ver. 24.06

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:InvalidNetworkInterface
The supplied network interface token does not exist.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.4.7 DeleteNetworkInterfaceDot1XConfiguration

This operation unbinds the IEEE 802.1X configuration associated with a network interface on the device. If
there is no IEEE 802.1X configuration associated with the specified network interface, then the operation does
nothing.

The Device Management SetNetworkInterface operation provides a method of unbinding an IEEE 802.1X
configuration from an IEEE 802.11 (wireless) interface by omitting the configuration ID, and that operation may
still be used. But there is no ability for SetNetworkInterface to unbind an IEEE 802.1X configuration from a
hardwired interface. This operation is provided to unbind an IEEE 802.1X configuration from either type of
interface.

If the Device Management SetNetworkInterface operation was used to bind an IEEE 802.1X configuration to
an IEEE 802.11 (wireless) interface, then this operation shall unbind the IEEE 802.1X configuration information
as if the SetNetworkInterfaceDot1XConfiguration operation had been used.

If the device cannot process the provided network interface token, the device shall produce an InvalidNet-
workInterface fault.

A device signalling support for IEEE 802.1X configuration with the MaximumNumberOfDot1XConfigurations
capability shall support this command.

REQUEST:

• token - [xs:string]
The unique identifier of the Network Interface for which the 802.1X configuration is to be deleted.
(NOTE: the network interface token is defined in devicemgmt.wsdl as tt:ReferenceToken, which is a
derived type of xs:string. To avoid importing all of common.xsd for this single type, the base type is
used here.)

RESPONSE:

• RebootNeeded - [xs:boolean]
Indicates whether or not a reboot is required after configuration updates.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:InvalidNetworkInterface
The supplied network interface token does not exist.

ACCESS CLASS:

WRITE_SYSTEM

5.5 Autorization Server Configuration

This chapter describes configuration of external authorization servers. For an overview of this see 4.5.

5.5.1 GetAuthorizationServerConfigurations

This operation retrieves an existing authorization server configuration, or all existing authorization server con-
figurations if Token is not specified.

ONVIF™ – 59 – Security Configuration – Ver. 24.06

REQUEST:

• Token - optional [tt:ReferenceToken]
Optional configuration token to get.

RESPONSE:

• Configuration - optional, unbounded [tas:AuthorizationServerConfiguration]
List of authorization server configurations.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:NoConfig
The requested configuration does not exist.

ACCESS CLASS:

READ_SYSTEM_SECRET

5.5.2 CreateAuthorizationServerConfiguration

This operation creates a new authorization server configuration. The configuration data shall be created in the
device and shall be persistent (remain after reboot).

REQUEST:

• Configuration - [tas:AuthorizationServerConfigurationData]
Details of the configuration that shall be created.

RESPONSE:

• Token - [tt:ReferenceToken]
Token assigned to the newly configuration.

FAULTS:

• env:Receiver - ter:Action - ter:MaxAuthorizationServers
The maximum number of configurations supported by the device has been reached.

• env:Sender - ter:InvalidArgVal - ter:InvalidConfig
The configuration parameters are not possible to set.

ACCESS CLASS:

WRITE_SYSTEM

5.5.3 SetAuthorizationServerConfiguration

This operation modifies an existing authorization server configuration.

REQUEST:

• Configuration - [tas:AuthorizationServerConfiguration]
The modified authorization server configuration.

RESPONSE:

This is an empty message

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:NoConfig
The requested configuration does not exist.

ONVIF™ – 60 – Security Configuration – Ver. 24.06

• env:Sender - ter:InvalidArgVal - ter:InvalidConfig
The configuration parameters are not possible to set.

ACCESS CLASS:

WRITE_SYSTEM

5.5.4 DeleteAuthorizationServerConfiguration

This operation deletes the given authorization server configuration and configuration change shall always be
persistent.

REQUEST:

• Token - [tt:ReferenceToken]
Token of the configuration to delete.

RESPONSE:

This is an empty message

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:NoConfig
The requested configuration does not exist.

ACCESS CLASS:

WRITE_SYSTEM

5.6 JWT-based authentication

The following functions are defined to control the set of accepted aud claims. See also 4.3.

5.6.1 GetJWTConfiguration

This operation returns the parameters of the JWT authorization used by the device. A device shall support this
command if the capability JsonWebToken in the device service capabilities is set.

REQUEST:

This is an empty message.

RESPONSE:

• Configuration - [tas:JWTConfiguration]
The configuration parameters for JWT authorization used by the device.

FAULTS:

None

ACCESS CLASS:

READ_SYSTEM_SECRET

5.6.2 SetJWTConfiguration

This operation sets the parameters of the JWT authorization used by the device. A device shall support this
command if the capability JsonWebToken in the device service capabilities is set.

JWT client authorization of the device is enabled when at least one key or trusted issuer URI is provided.

ONVIF™ – 61 – Security Configuration – Ver. 24.06

REQUEST:

• Configuration - [tas:JWTConfiguration]
The configuration parameters for JWT authorization used by the device.

RESPONSE:

This is an empty message.

FAULTS:

• env:Sender - ter:InvalidArgVal - ter:TooManyAudiences
The list of audiences is too big to be saved.

• ter:Sender - ter:InvalidArgVal - ter:KeyID
No key is stored under the requested KeyID.

• ter:Sender - ter:InvalidArgVal - ter:MaxIssuersExceeded
Too many trusted issuers provided.

• env:Sender - ter:InvalidArgVal - ter:CertPathValidationPolicyID
No certification path validation policy is stored under the requested certification path validation policy
ID.

ACCESS CLASS:

WRITE_SYSTEM_SECRET

A device shall support assignment of as many keys as its key store can hold. A device shall support at least
two trusted issuers.

5.7 Capabilities

5.7.1 GetServiceCapabilities

The capabilities reflect optional functions and functionality of the different features in the security configuration
service. The service capabilities consist of keystore capabilities and TLS server capabilities. The information
is static and does not change during device operation.

A device shall support this command.

REQUEST:

This is an empty message.

RESPONSE:

• Capabilities - [tas:Capabilities]
The capabilities for the security configuration service.

FAULTS:

None

ACCESS CLASS:

PRE_AUTH

5.7.2 Keystore Capabilities

The keystore capabilities reflect optional functions and functionality of the keystore on a device. The following
capabilities are available:

ONVIF™ – 62 – Security Configuration – Ver. 24.06

Table 8: Keystore Capabilities

Capability Name Capability Semantics

MaximumNumberOfPassphrases Indicates the maximum number of
passphrases that the device is able to
store simultaneously.

MaximumNumberOfKeys Indicates the maximum number of keys
that the device is able store simultaneous-
ly.

MaximumNumberOfCertificates Indicates the maximum number of certifi-
cates that the device is able to store simul-
taneously.

MaximumNumberOfCertificationPaths Indicates the maximum number of certifi-
cate paths that the device is able to store
simultaneously.

RSAKeyPairGeneration Indicates support for on-board RSA key
pair generation.

ECCKeyPairGeneration Indicates support for on-board ECC key
pair generation.

RSAKeyLengths Indicates which RSA key lengths are sup-
ported by the device.

EllipticCurves Indicates which elliptic curves are support-
ed by the device.

PKCS8RSAKeyPairUpload Indicates support for uploading an RSA
key pair in a PKCS#8 data structure.

PKCS8 Indicates support for uploading supported
key pair in a PKCS#8 data structure.

PKCS12CertificateWithRSAPrivateKeyUpload Indicates support for uploading a certifi-
cate along with an RSA private key in a
PKCS#12 data structure.

PKCS12 Indicates support for uploading a certifi-
cate along with a private key in a PKCS#12
data structure.

PKCS10ExternalCertificationWithRSA Indicates support for creating PKCS#10
requests for RSA keys and uploading the
certificate obtained from a CA.

PKCS10 Indicates support for creating PKCS#10
requests for asymetric key pair and up-
loading the certificate obtained from a CA.

SelfSignedCertificateCreationWithRSA Indicates support for creating self-signed
certificates for RSA keys.

SelfSignedCertificateCreation Indicates support for creating self-signed
certificates.

SignatureAlgorithms Indicates which signature algorithms are
supported by the device.

PasswordBasedEncryptionAlgorithms Indicates which password-based encryp-
tion algorithms are supported by the de-
vice.

ONVIF™ – 63 – Security Configuration – Ver. 24.06

Capability Name Capability Semantics

PasswordBasedMACAlgorithms Indicates which password-based MAC al-
gorithms are supported by the device.

X.509Versions Indicates which X.509 versions are sup-
ported by the device.a X.509 versions shall
be encoded as version numbers, e.g., 1,
2, 3.

MaximumNumberOfCRLs Indicates the maximum number of CRLs
that the device is able to store simultane-
ously.

MaximumNumberOfCertificationPathValidationPolicies Indicates the maximum number of certifi-
cation path validation policies that the de-
vice is able to store simultaneously.

EnforceTLSWebClientAuthExtKeyUsage Indicates whether a device supports
checking for the TLS WWW client auth ex-
tended key usage extension while validat-
ing certification paths.

NoPrivateKeySharing Indicates the device requires that each
certificate with private key has its own
unique key.

aIf a device supports X.509v3 certificates, this fact shall also be signalled by this capability.

5.7.3 TLS Server Capabilities

The TLS server capabilities reflect optional functions and functionality of the TLS server. The information is
static and does not change during device operation. The following capabilities are available:

Table 9: TLS Server Capabilities

TLSServerSupported Indicates which TLS server versions
are supported by the device. Server
versions shall be encoded as version
numbers, e.g., “1.0 1.1 1.2”.

MaximumNumberOfTLSCertificationPaths Indicates the maximum number of
certification paths that may be as-
signed to the TLS server simultane-
ously.

TLSClientAuthSupported Indicates whether the device supports
TLS client authentication as defined in
this specification.

CnMapsToUserSupported Indicates whether the device supports
TLS client authorization using com-
mon name to local user mapping as
defined in this specification

MaximumNumberOfTLSCertificationPathValidationPolicies Indicates the maximum number of
certification path validation policies
that may be assigned to the TLS serv-
er simultaneously

EnabledVersionsSupported Indicates whether the device supports
enabling and disabling specific TLS
versions.

ONVIF™ – 64 – Security Configuration – Ver. 24.06

5.7.4 IEEE 802.1X Capabilities

The IEEE 802.1X configuration capabilities reflect optional functions and functionality of IEEE 802.1X config-
uration on a device. The following additional capabilites are defined:

Table 10: Additional IEEE 802.1X Configuration Capabilities

Capability Name Capability Semantics

MaximumNumberOfDot1XConfigurations Indicates the maximum number of IEEE 802.1X con-
figurations that the device is able to configure simul-
taneously.

Dot1XMethods A list of authentication method outer/inner (phase1/
phase2) combinations supported by the device.

5.7.5 Authorization Server Capabilities

The authorization server capabilities reflect optional functionality regarding configuration of external authoriza-
tion servers. The following capabilities are defined:

Table 11: Authorization Server Configuration Capabilities

Capability Name Capability Semantics

MaxAuthorizationServerConfigurations Indicates the maximum number of authorization
server configurations that the device is able to con-
figure simultaneously.

AuthorizationServerConfigurationTypesSupported A list of authorization server configuration types that
is supported by the device, see Table 6 for possible
values.

ClientAuthenticationMethodsSupported A list of authentication methods that is supported by
the device, see Table 7 for possible values.

5.7.6 Capability-implied Requirements

Table 12 summarizes for each capability the minimum requirements that a device signaling this capability shall
satisfy; it should not be seen as a recommendation.

Table 12: Requirements implied by Capabilities

Capability Implied Requirements

MaximumNumberOfPassphras-
es

If greater than zero, the following commands shall be supported:

• UploadPassphrase

• GetAllPassphrases

• DeletePassphrase

If greater than zero, the device shall support passphrases that consist
of characters from the ASCII character set and that have a length of up
to 40 characters.

MaximumNumberOfKeys If greater than zero, then the following commands shall be supported:

• GetKeyStatus

• GetAllKeys

ONVIF™ – 65 – Security Configuration – Ver. 24.06

Capability Implied Requirements
• DeleteKey

MaximumNumberOfCertificates If greater than zero, then MaximumNumberOfKeys>0 shall hold.

MaximumNumberOfCertifica-
tionPaths

If greater than zero, MaximumNumberOfCertificates>=2 shall hold.

RSAKeyPairGeneration If true, the following commands shall be supported:

• CreateRSAKeyPair

If true, the list of supported RSA key lengths as indicated by the
RSAKeyLenghts capability shall not be empty.

If true, MaximumNumberOfKeys>0 shall hold.

ECCKeyPairGeneration If true, the following commands shall be supported:

• CreateECCKeyPair

If true, the list of supported elliptic curves indicated by the EllipticCurves
capability shall not be empty.

If true, MaximumNumberOfKeys>0 shall hold.

PKCS8 If true, the following commands shall be supported:

• UploadKeyPairInPKCS8

If true, MaximumNumberOfKeys > 0 shall hold.

If true, the list of supported password-based encryption algorithms as
indicated by the PasswordBasedEncryptionAlgorithms capability shall
contain at least the algorithm pbeWithSHAAnd3-KeyTripleDES-CBC.

If true, at least one capability between EllipticCurves and
RSAKeyLenghts shall be specified.

PKCS8RSAKeyPairUpload If true, the conditions of PKCS8 shall be supported:

If true, the list of supported RSA key lengths as indicated by the
RSAKeyLenghts capability shall not be empty.

PKCS12 If true, the following commands shall be supported:

• UploadCertificateWithPrivateKeyInPKCS12

• GetCertificate

• GetAllCertificates

• DeleteCertificate

• GetCertificationPath

• GetAllCertificationPaths

• DeleteCertificationPath

If true, MaximumNumberOfKeys >=2 shall hold.

ONVIF™ – 66 – Security Configuration – Ver. 24.06

Capability Implied Requirements
If true, MaximumNumberOfCertificates >=2 shall hold.

If true, MaximumNumberOfCertificattionPaths >0 shall hold.

If true, the list of supported password-based encryption algorithms as
indicated by the PasswordBasedEncryptionAlgorithms capability shall
contain at least the algorithm pbeWithSHAAnd3-KeyTripleDES-CBC.

If true, the list of supported password-based MAC algorithms as indi-
cated by the PasswordBasedMACAlgorithms capability shall contain at
least the algorithm hmacWithSHA256.

If true, the list of supported X.509 versions as indicated by the X.509Ver-
sions capability shall contain at least the value 3.

PKCS12CertificateWithRSAPri-
vateKeyUpload

If true, the conditions of capability PKCS12 shall be fulfilled.

If true, the list of supported RSA key lengths as indicated by the
RSAKeyLenghts capability shall not be empty.

PKCS10 If true, the following operations shall be supported:

• Creating a CSR with the CreatePKCS10CSR command.

• GetCertificate

• GetAllCertificates

• DeleteCertificate

• Uploading the certificate created for the CSR as well as the cer-
tificate of the created certificate’s signer with the UploadCertifi-
cate command.

If true, MaximumNumberOfCertificates>=2 and MaximumNumberOfCer-
tificationPaths>0 shall hold.

If true, MaximumNumberOfKeys>=2 shall hold.

If true and the capability RSAKeyLenghts is not empty the following con-
dition shall be fulfilled:

• The capability RSAKeyPairGeneration shall be specified .

If true and the capability EllipticCurves is provided, the following condi-
tions shall be fulfilled:

• The capability ECCKeyPairGeneration shall be specified.

• The list of supported signature algorithms as indicated by the
SignatureAlgorithms capability shall contain at least the algo-
rithms ECDSA-With-SHA1 and ECDSA-With-SHA256.

PKCS10ExternalCertification-
WithRSA

If true, the conditions of capability PKCS10 shall be fulfilled.

If true, the list of supported RSA key lengths as indicated by the
RSAKeyLenghts capability shall not be empty.

SelfSignedCertificateCreation If true, the following commands shall be supported:

ONVIF™ – 67 – Security Configuration – Ver. 24.06

Capability Implied Requirements
• CreateSelfSignedCertificate

• GetCertificate

• GetAllCertificates

• DeleteCertificate

If true, MaximumNumberOfCertificates> 0 shall hold.

If true, the following operations shall be supported:

• Key pair generation as signaled by the RSAKeyPairGeneration
or ECCKeyPairGeneration capability or key pair upload as sig-
naled by the PKCS8 capability or key pair upload as signaled by
the PKCS12CertificateWithRSAPrivateKeyUpload capability

If true and the capability RSAKeyLenghts is not empty the following con-
ditions shall be fulfilled:

• The capability RSAKeyPairGeneration shall be specified .

• The list of supported signature algorithms as indicated by the
SignatureAlgorithms capability shall contain at least the algo-
rithms sha1-WithRSAEncryption and sha256WithRSAEncryp-
tion.

If true and the capability EllipticCurves is provided, the following condi-
tion shall be fulfilled:

• The capability ECCKeyPairGeneration shall be specified.

SelfSignedCertificateCreation-
WithRSA

If true, the conditions of the SelfSignedCertificateCreation capability shall
be supported.

If true, the list of supported RSA key lengths as indicated by the
RSAKeyLenghts capability shall not be empty.

TLSServerSupported If not empty, PKCS10ExternalCertificationWithRSA or SelfSignedCertifi-
cateCreationWithRSA or PKCS10 or SelfSignedCertificateCreation shall
be true.

If not empty, the following commands shall be supported:

• CreateCertificationPath

• GetCertificationPath

• GetAllCertificationPaths

• DeleteCertificationPath

• AddServerCertificateAssignment

• RemoveServerCertificateAssignment

• ReplaceServerCertificateAssignment

ONVIF™ – 68 – Security Configuration – Ver. 24.06

Capability Implied Requirements
• GetAssignedServerCertificates

If not empty, MaximumNumberOfCertificationPaths>=2 and Maximum-
NumberOfTLSCertificationPaths>0 shall hold.

TLSServerSupported and
PKCS10ExternalCertification-
WithRSA

If TLSServerSupported is non-empty and PKCS10ExternalCertification-
WithRSA is true, MaximumNumberOfCertificates>=3 shall hold.

TLSServerSupported and
PKCS10

If TLSServerSupported is non-empty and PKCS10 is true, Maximum-
NumberOfCertificates>=3 shall hold.

MaximumNumberOfTLSCertifi-
cationPaths

If greater than zero, MaximumNumberOfCertificationPaths>0 shall hold.

EnabledVersionsSupported If true, the following commands are supported:

• SetEnabledTLSVersions

• GetEnabledTLSVersions

X.509Versions If X.509v3 is supported, the device shall support the distinguished name
attribute types country, organization, organizational unit, distinguished
name qualifier, state or province name, common name, and serial num-
ber.

MaximumNumberOfCRLs If greater than zero, then the following commands shall be supported

• UploadCRL

• GetCRL

• GetAllCRLs

• DeleteCRL

MaximumNumberOfCertifica-
tionPathValidationPolicies

If greater than zero, then the following command shall be supported

• CreateCertPathValidationPolicy

• GetCertPathValidationPolicy

• GetAllCertPathValidationPolicies

• DeleteCertPathValidationPolicy

If greater than zero, PKCS12CertificateWithRSAPrivateKeyUpload,
PKCS10ExternalCertificationWithRSA or SelfSignedCertificateCre-
ationWithRSA or PKCS12 or PKCS10 or SelfSignedCertificateCreation
shall be true.

TLSClientAuthSupported If true, the following commands shall be supported

• SetClientAuthenticationRequired

• GetClientAuthenticationRequired

• AddCertPathValidationPolicyAssignment

• RemoveCertPathValidationPolicyAssignment

ONVIF™ – 69 – Security Configuration – Ver. 24.06

Capability Implied Requirements
• ReplaceCertPathValidationPolicyAssignment

• GetAssignedCertPathValidationPolicies

If true, TLSServerSupported shall not be empty.

If true, MaximumNumberOfCertificationPathValidationPolicies>=2
and MaximumNumberOfTLSCertificationPathValidationPolicies>0 shall
hold.

If true, the device shall support

• validating certification paths containing X.509v3 certificates that
are signed with signatures of type sha1-WithRSAEncryption or
sha256WithRSAEncrpytion

• processing X.509 CRLs that are compliant to the CRL profile
defined in RFC 5280, Sect. 5 and that

○ are signed with signatures of type sha1-WithRSAEn-
cryption or, sha256WithRSAEncryption and

○ are complete direct CRLs as defined in RFC 5280 that
are signed with the same signature key as the signature
key that the CA uses to sign issued certificates

MaximumNumberOfTLSCertifi-
cationPathValidationPolicies

If greater than zero, MaximumNumberOfCertificationPathValidationPoli-
cies >0 shall hold.

MaximumNumberOfDot1XCon-
figurations

If greater than zero, the following commands shall be supported:

• AddDot1XConfiguration

• GetDot1XConfigurations

• GetDot1XConfiguration

• DeleteDot1XConfiguration

• SetNetworkInterfaceDot1XConfiguration

• GetNetworkInterfaceDot1XConfiguration

• DeleteNetworkInterfaceDot1XConfiguration

If greater than zero, the Dot1XMethods capability shall be present and
shall contain at least the EAP-PEAP MSCHAPv2 method.

Dot1XMethods If not empty, shall contain at least the “EAP-PEAP/MSCHAPv2” method,
and MaximumNumberOfDot1XConfigurations shall be greater than zero.

EllipticCurves The list of supported elliptic curves.

5.8 Events

5.8.1 Key Status

A device that indicates support for key handling via the MaximumNumberOfKeys capability shall provide infor-
mation about key status changes through key status events.

ONVIF™ – 70 – Security Configuration – Ver. 24.06

A device shall include optional item OldStatus unless NewStatus is generating.

Topic: tns1:Advancedsecurity/Keystore/KeyStatus
<tt:MessageDescription>
 <tt:Source>
 <tt:SimpleItemDescription Name="KeyID" Type="tas:KeyID"/>
 </tt:Source>
 <tt:Data>
 <tt:SimpleItemDescription Name="OldStatus" Type="tas:KeyStatus"/>
 <tt:SimpleItemDescription Name="NewStatus" Type="tas:KeyStatus"/>
 </tt:Data>
</tt:MessageDescription>

5.9 Service specific data types

The service specific data types are defined in security.wsdl.

6 Security Considerations

This section is informative.

• Faults and their types shall not disclose sensitive information to an attacker that he could not obtain
otherwise.

• Secure up to date signature algorithm should be implemented by devices and clients. Devices signal
the supported algorithm via their capabilities and clients should select the algorithm with highest se-
curity strength supported by both parties. As common baseline this specification requires device side
support for SHA-2, particularly sha256WithRSAEncryption as specified in RFC 4055. Note that for
backward compatibility of some usages this specification currently mandates device side support for
sha1WithRSAEncryption as specified in RFC 3279.

• Operations with arguments that need protection against eavesdropping or manipulation shall only be
executed over sufficiently protected communication channels.

• It is good practice not to use the same key for different purposes. In order to prevent the device from
using the same key for different purposes unnoticedly, this specification mandates that all keys in the
keystore be distinct.

• Private keys must be protected against disclosure to unauthorized parties. If a private key is uploaded
in an encrypted PKCS#8 or PKCS#12 structure, the passphrase that is used to encrypt the structure
must be uploaded to the device over a communication channel that is protected against eavesdropping
in order to preserve the confidentiality of the private key. Moreover, the confidentiality of the uploaded
private key depends on the strength of the encryption passphrase. It is therefore strongly recommended
to use random passwords with sufficient length.

• In general, externally generated keys must be regarded less trustworthy than keys that are generated
by the device because the probability of being disclosed to an attacker is higher for an externally gen-
erated key than for an internally generated key. A client may determine whether a key was generated
by the device from the externallyGenerated attribute of the key.

• While new specifications should be based on PKCS#5 v2.0 or higher, adoption of this standard is still
limited. Therefore, this specification intends to balance security and interoperability by mandating cryp-
tographic algorithms based on PKCS#5 v1.5 as interoperability baseline while strongly encouraging
the use of PKCS#5 v2.0 or higher. Future versions of this specification or specifications referring to
this specification may mandate additional cryptographic algorithms.

• Although PKCS#8 RFC 5208 is widely used for exchanging cryptographic keys, this specification is
based on the successor standard RFC 5958, particularly in order to incorporate both private key and
public key in the same data structure.

• The default certification path validation policy is designed as a permissive interoperability baseline
based on the certification path validation algorithm defined in RFC 5280.

ONVIF™ – 71 – Security Configuration – Ver. 24.06

• CRLs can be expected to be available from virtually any CA as a source of revocation information. The
benefit of OCSP RFC 6960 as a means to obtain revocation information is increasingly under question,
since a man-in-the-middle attacker blocking OCSP traffic combined with a permissive validator that
silently accepts certificates for which no revocation is available limits the effective security gain of using
OCSP. Therefore, this specification mandates support for CRLs as interoperability baseline and leaves
other revocation information sources to future versions.

• Devices may be required to use different trust anchors for different security features. Therefore, trust
in a certificate is indicated as part of a certification path validation policy rather than globally, e.g., with
an attribute of the X509Certificate data type.

• RFC 5280, Sect. 6.1.4 (k) mandates that every certificate in a certification path except for the end
entity certificate must be verified to be a CA certificate. For X.509 version 3 certificates, this is verified
through the CA attribute in the basic constraints extension. For X.509 version 1 and 2 certificates,
this information must be supplied by out-of-band mechanisms. Within the scope of this specification,
the only means to obtain this information is the trust anchor information contained in the certification
path validation algorithm. Therefore, the default certification path validation policy mandates that the
certification path validation algorithm defined in Sect. 4.2.4 consider all certificates that are not marked
as trust anchor as non-CA certificates.

• When configuring IEEE 802.1X, it is usually necessary to upload a password to the device’s keystore.
This should be done either on a private network (e.g., using a direct network connection between a
laptop and a device) or using TLS (SSL) on the device to encrypt client / device traffic.

7 Design Rationale

This section is informative.

7.1 General Design Goals

The Security Configuration Service is designed for modularity and extensibility. Therefore, each security feature
is encapsulated in a separate port type within the service. Later revisions of this specification may add port
types to enhance the Security Configuration Service by additional security features.

Within a security feature, capabilities indicate support for sub-features and configuration options. Later revi-
sions of this specification may add additional sub-features to existing features and identify them by additional
capabilities.

Port types and capabilities enable devices to support well-defined subsets of this specification and to commu-
nicate this information to clients effectively.

7.2 Keystore

The keystore design assumes that passphrases are chosen by clients. Therefore, an operation for retrieving
passphrases from a device is deliberately omitted. If client loses a previously uploaded passphrase, the client
should create a new passphrase, upload the new passphrase to the device, and delete the old passphrase
from the device.

This specification deliberately deviates from the terminology in PKCS#8 and PKCS#12 by using the term
‘passphrase’ instead of ‘password’ in order to avoid confusion with the password that is assigned to ONVIF
device users and the corresponding API in the ONVIF Device Management Service.

The keystore design is based on the rationale that an RSA key pair is a special type of key pair and a key
pair is a special type of key. Therefore, key-related operations in the keystore deliberately refer to the most
generic possible type in this hierarchy. For example, the DeleteKey operation (see Sect. 5.2.6.2.7) refers to a
key instead of a key pair or even an RSAKeyPair because it is applicable to all keys. On the other hand, the
GetPrivateKeyStatus command refers to a key pair instead of a key, since this command is not meaningful for
a key that is not a key pair, e.g., a symmetric key.

While this revision of the keystore specification only supports RSA key pairs as key pairs, later revisions of this
specification may add other types of key pairs or symmetric keys as special types of keys.

ONVIF™ – 72 – Security Configuration – Ver. 24.06

Some interactions with the keystore, e.g., retrieving the private key for a public key that is contained in a cer-
tificate, are required device-internally, but need not be accessible to clients and may even, as in the above
example, imply a security risk when made available outside the device. Such operations are therefore deliber-
ately omitted from this specification.

The certificate-based client authentication specification intends to balance security concerns, interoperability,
and implementation effort in order to facilitate adoption. Therefore, the certification path validation algorithm
defined in RFC 5280 serves as interoperability baseline. The parameter values in the default certification path
validation policy have been selected such that widely used implementations of the certification path validation
algorithm can be used in their default configurations as much as permitted by the objective to provide an
acceptable security baseline.

At the same time, more fine grained customization of the default certification path validation behavior in fu-
ture versions of this specification is enabled by an extensible CertValidationPolicyParameters data type and
capabilities that indicate which configuration options a device supports. As an example, checking for the TLS
WWW client authentication key usage extension in client certificates is included in this specification, which can
be implemented with moderate effort on the device side (e.g., with the OpenSSL option –purpose sslclient).
Customization options for other parameters of the certification path validation algorithm are deliberately left to
future versions of this specification in order to limit the required initial implementation effort.

In order to facilitate future extensions of this specification, the number of certification path validation policies that
may be assigned to the TLS server simultaneously is not limited, but the certification path validation behavior
is unspecified if more than one policy is assigned to the TLS server at the same time. Therefore, devices
implementing this specification should limit the number of simultaneously assigned policies to one.

7.3 TLS Server

This revision of the Security Configuration Service Specification allows to manage assignments of certification
paths to the TLS server on a device. It is permitted that a TLS server presents different certification paths to
different clients, therefore more than one certification path may be assigned simultaneously to the TLS server
to use as a server certificate.

All other configuration of the TLS server on a device is outside the scope of this specification revision and may
be addressed by later revisions of this document.

ONVIF™ – 73 – Security Configuration – Ver. 24.06

Annex A.
JWT Content example

Here is an example of JWT components to be encoded into a JWT Token

{
 "typ":"JWT",
 "alg":"ES256",
}.{
 "iss":"server.path.com", // FQDN of the server that issued the JWT
 "nbf":1670482800, // not before Thursday, December 8, 2022 7:00:00 AM (GMT)
 "exp":1670572800, // expire at Friday, December 9, 2022 8:00:00 AM (GMT)
 "aud":"target.audience",
 "roles":["onvif:Operator"]
}

which is base64url-encoded in three parts according to RFC 7519 as

eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJpc3MiOiJzZXJ2ZXIucGF0aC5jb20iLCJuYmYiOjE2NzA0ODI4MDAsImV
4cCI6MTY3MDU3MjgwMCwiYXVkIjoidGFyZ2V0LmF1ZGllbmNlIiwicm9sZXMiOlsib252aWY6T3BlcmF0b3IiXX0.SflKxw
RJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

ONVIF™ – 74 – Security Configuration – Ver. 24.06

Annex B.
JWT over SCTP example

A JWT, whose content example is shown in Annex A, can be used in the WS-Security header of the SOAP
request. To conform to the BinarySecurityToken format, the JWT itself must be base64-encoded before being
embedded in the request:

ZZXlKMGVYQWlPaUpLVjFRaUxDSmhiR2NpT2lKRlV6STFOaUo5LmV5SnBjM01pT2lKelpYSjJaWEl1Y0dGMGFDNW
piMjBpTENKdVltWWlPakUyTnpBME9ESTRNREFzSW1WNGNDSTZNVFkzTURVM01qZ3dNQ3dpWVhWa0lqb2lkR0Z5
WjJWMExtRjFaR2xsYm1ObElpd2ljbTlzWlhNaU9sc2liMjUyYVdZNlQzQmxjbUYwYjNJaVhYMC5TZmxLeHdSSl
NNZUtLRjJRVDRmd3BNZUpmMzZQT2s2eUpWX2FkUXNzdzVj

This encoded token can then be added to the SOAP request in a BinarySecurityToken element.

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:enc="http://www.w3.org/2003/05/soap-encoding"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xop="http://www.w3.org/2004/08/xop/include"
 xmlns:tds="http://www.onvif.org/ver10/device/wsdl"
 xmlns:tt="http://www.onvif.org/ver10/schema">
 <env:Header>
 <wsse:Security>
 <wsse:BinarySecurityToken ValueType="urn:ietf:params:oauth:token-type:jwt"
EncodingType=”http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-sec
urity-1.0#BinarySecurityToken”>
ZXlKMGVYQWlPaUpLVjFRaUxDSmhiR2NpT2lKRlV6STFOaUo5LmV5SnBjM01pT2lKelpYSjJaWEl1Y0dGMGFDNW
piMjBpTENKdVltWWlPakUyTnpBME9ESTRNREFzSW1WNGNDSTZNVFkzTURVM01qZ3dNQ3dpWVhWa0lqb2lkR0Z5
WjJWMExtRjFaR2xsYm1ObElpd2ljbTlzWlhNaU9sc2liMjUyYVdZNlQzQmxjbUYwYjNJaVhYMD0uU2ZsS3h3Uk
pTTWVLS0YyUVQ0ZndwTWVKZjM2UE9rNnlKVl9hZFFzc3c1Yw==
 </wsse:BinarySecurityToken>
 </wsse:Security>
 </env:Header>
 <env:Body>
 <tds:GetDeviceInformation/>
 <env:Body>
</env:Envelope>

ONVIF™ – 75 – Security Configuration – Ver. 24.06

Annex C.
JWT over HTTPS example

The following exchange between client and device over HTTPS demonstrates a device supporting MD5 and
SHA-256 for digest authentication as well as JWT-based client authentication.

Unauthenticated request from the client:

POST /onvif/device_service HTTP/1.1
Host: 10.XX.XX.XX
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<GetDeviceInformation xmlns="http://www.onvif.org/ver10/device/wsdl"/>
</s:Body></s:Envelope>

Response from the device challenging for authentication

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="Silvan_http_digest"
WWW-Authenticate: Digest algorithm=MD5, realm="Silvan_http_digest", qop="auth",
nonce="62d82aa9ca59e3a04cd1", opaque="5b6ea228"
WWW-Authenticate: Digest algorithm=SHA-256, realm="Silvan_http_digest", qop="auth",
nonce="62d82aa9ca59e3a04cd1", opaque="5b6ea228"
X-Frame-Options: SAMEORIGIN

Authenticated request from the client, by using JWT-based client authentication whose JWT content looks like
the example is shown in Annex A

POST /onvif/device_service HTTP/1.1
Host: 10.XX.XX.XX
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJpc3MiOiJzZXJ2ZXIucGF0aC5
jb20iLCJuYmYiOjE2NzA0ODI4MDAsImV4cCI6MTY3MDU3MjgwMCwiYXVkIjoidGFyZ2V0LmF1ZGllbmNlIiwic
m9sZXMiOlsib252aWY6T3BlcmF0b3IiXX0.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<GetDeviceInformation xmlns="http://www.onvif.org/ver10/device/wsdl"/>
</s:Body></s:Envelope>

Response from the device, rejecting the expired token

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="Silvan_http_digest", error="invalid_token",
error_description="The access token expired"
WWW-Authenticate: Digest algorithm=MD5, realm="Silvan_http_digest", qop="auth",
nonce="62d82aa9ca59e3a04cd1", opaque="5b6ea228"
WWW-Authenticate: Digest algorithm=SHA-256, realm="Silvan_http_digest", qop="auth",
nonce="62d82aa9ca59e3a04cd1", opaque="5b6ea228"
X-Frame-Options: SAMEORIGIN

ONVIF™ – 76 – Security Configuration – Ver. 24.06

Annex D.
JWT over RTSPS example

The following exchange between client and device over RTSPS demonstrates a device supporting MD5 and
SHA-256 for digest authentication as well as JWT-based client authentication.

Unauthenticated request from the client:

DESCRIBE rtsp://10.XX.XX.XX/stream RTSP/1.0
CSeq: 1
User-Agent: ./onvifClient
Accept: application/sdp

Response from the device challenging for authentication

RTSP/1.0 401 Unauthorized
CSeq: 1
WWW-Authenticate: Bearer realm="Silvan_rtsp_digest"
WWW-Authenticate: Digest algorithm=MD5, realm="Silvan_rtsp_digest", qop="auth",
nonce="62d82aa9ca59e3a04cd1", opaque="5b6ea228"
WWW-Authenticate: Digest algorithm=SHA-256, realm="Silvan_rtsp_digest", qop="auth",
nonce="62d82aa9ca59e3a04cd1", opaque="5b6ea228"

Authenticated request from the client, by using JWT-based client authentication whose JWT content looks like
the example is shown in Annex A

DESCRIBE rtsp://10.XX.XX.XX/stream RTSP/1.0
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJpc3MiOiJzZXJ2ZXIucGF0aC5
jb20iLCJuYmYiOjE2NzA0ODI4MDAsImV4cCI6MTY3MDU3MjgwMCwiYXVkIjoidGFyZ2V0LmF1ZGllbmNlIiwic
m9sZXMiOlsib252aWY6T3BlcmF0b3IiXX0.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c
CSeq: 2
User-Agent: ./onvifClient
Accept: application/sdp

ONVIF™ – 77 – Security Configuration – Ver. 24.06

Annex E.
Revision History

Rev. Date Editor Changes

1.0 Aug - 2013 Dirk Stegemann Initial version

1.0.1 Dec - 2013 Michio Hirai, , Dirk
Stegemann

Change Request 1219, 1220, 1222, 1267, 1271, 1272,
1277

1.0.2 June - 2014 Dirk Stegemann,
Stefan Andersson

Change Request 1268, 1276, 1349, 1350, 1351, 1352,
1376, 1377, 1378, 1379, 1380, 1381, 1382, 1390

1.1 Dec - 2014 Dirk Stegemann Change Request 1528, 1529, 1530, 1531, 1532, 1533,
1534, 1535, 1536, 1543, 1554

1.2 Jun - 2015 Dirk Stegemann Change Request 1552, 1555, 1565, 1580, 1583, 1590,
1615, 1616, 1617, 1618, 1619. Added certificate-based
client authentication

1.3 Feb-2016 Stefan Andersson
Steve Wolf

Added IEEE 802.1X configuration

Mar-2017 Hans Busch Change Request 1843

18.06 Jun-2018 Hiroyuki Sano Change Request 2240, 2259

18.12 Dec-2018 Steve Wolf Change Request 2262, 2308

19.12 Dec-2019 Davide Cristanelli Added Authorization of TLS authenticated connections

21.12 Dec-2021 Oksana Tyushkina,
Rick Boer

Fix typo in commands names. Fix inconsistency in
Security NoMatchingPrivateKey

22.06 June-2022 Hans Busch Fix fault namespace prefix and remove requirement to
accept missing MAC when passphrase is present.

22.12 Dec-2022 Hans Busch Do not require to support multiple identical pathes.
Remove CRL requirement on client authentication.

23.06 June-2023 Hans Busch Remove requirement on passphrase support.

23.12 Dec-2023 Ottavio Campana,
Fredrik Svensson

Added support for ECC cryptography, JSON Web Tokens,
Authorization Servers using OAuth2 and OpenID Connect.

24.06 June-2024 Sriram
Bhetanabottla,
Hans Busch

Improve readability of section on authorization server.
Move JWT example to annex.

	Advanced Security Service Specification
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Normative References
	Chapter 3. Terms and Definitions
	3.1. Definitions
	3.2. Abbreviations
	3.3. Namespace

	Chapter 4. Overview
	4.1. General Structure
	4.2. Certificate-based Client Authentication
	4.2.1. Overview
	4.2.2. Certification path validation
	4.2.3. Construct Prospective Certification Paths
	4.2.4. Validate Prospective Certification Path
	4.2.5. Determine Certificate Revocation Status
	4.2.6. Certification Path Validation Policy
	4.2.6.1. Certification Path Validation Algorithm Parameters
	4.2.6.2. Revocation Status Checking
	4.2.6.3. Trust Anchors
	4.2.6.4. Certificate Repository for constructing Certification Paths
	4.2.6.5. Specific certification path validation parameters

	4.2.7. Validate CRLs

	4.3. JWT-based client authorization
	4.3.1. Usage of JWT-based client authentication over HTTP
	4.3.2. Usage of JWT-based client authentication over HTTPS
	4.3.3. Usage of JWT-based client authentication over SCTP
	4.3.4. Usage of JWT-based client authentication over RTSP
	4.3.5. Usage of JWT-based client authentication over RTSPS

	4.4. IEEE 802.1X
	4.5. Authorization Servers
	4.5.1. Device authentication and authorization
	4.5.2. User authentication and authorization
	4.5.3. Authorization server configuration

	Chapter 5. Security Configuration Service
	5.1. General Structure
	5.2. Keystore
	5.2.1. Elements of the Keystore
	5.2.2. Unique Identifiers
	5.2.3. Uniqueness of Objects in the Keystore
	5.2.4. Referential Integrity
	5.2.5. Key Status
	5.2.6. Keystore Operations
	5.2.6.1. Passphrase Management
	5.2.6.1.1. UploadPassphrase
	5.2.6.1.2. GetAllPassphrases
	5.2.6.1.3. DeletePassphrase

	5.2.6.2. Key Management
	5.2.6.2.1. CreateRSAKeyPair
	5.2.6.2.2. CreateECCKeyPair
	5.2.6.2.3. UploadKeyPairInPKCS8
	5.2.6.2.4. GetKeyStatus
	5.2.6.2.5. GetPrivateKeyStatus (deprecated)
	5.2.6.2.6. GetAllKeys
	5.2.6.2.7. DeleteKey

	5.2.6.3. Certificate Management
	5.2.6.3.1. CreatePKCS10CSR
	5.2.6.3.2. CreateSelfSignedCertificate
	5.2.6.3.3. UploadCertificate
	5.2.6.3.4. UploadCertificateWithPrivateKeyInPKCS12
	5.2.6.3.5. GetCertificate
	5.2.6.3.6. GetAllCertificates
	5.2.6.3.7. DeleteCertificate
	5.2.6.3.8. CreateCertificationPath
	5.2.6.3.9. GetCertificationPath
	5.2.6.3.10. GetAllCertificationPaths
	5.2.6.3.11. DeleteCertificationPath

	5.2.6.4. CRL Management
	5.2.6.4.1. UploadCRL
	5.2.6.4.2. GetCRL
	5.2.6.4.3. GetAllCRLs
	5.2.6.4.4. DeleteCRL

	5.2.6.5. Certification Path Validation Policy Management
	5.2.6.5.1. CreateCertPathValidationPolicy
	5.2.6.5.2. GetCertPathValidationPolicy
	5.2.6.5.3. GetAllCertPathValidationPolicies
	5.2.6.5.4. DeleteCertPathValidationPolicy

	5.3. TLS Server
	5.3.1. Elements of the TLS Server
	5.3.2. Authorization of TLS authenticated connections
	5.3.3. TLS Server Operations
	5.3.3.1. AddServerCertificateAssignment
	5.3.3.2. RemoveServerCertificateAssignment
	5.3.3.3. ReplaceServerCertificateAssignment
	5.3.3.4. GetAssignedServerCertificates
	5.3.3.5. SetClientAuthenticationRequired
	5.3.3.6. GetClientAuthenticationRequired
	5.3.3.7. SetCnMapsToUser
	5.3.3.8. GetCnMapsToUser
	5.3.3.9. AddCertPathValidationPolicyAssignment
	5.3.3.10. RemoveCertPathValidationPolicyAssignment
	5.3.3.11. ReplaceCertPathValidationPolicyAssignment
	5.3.3.12. GetAssignedCertPathValidationPolicies
	5.3.3.13. SetEnabledTLSVersions
	5.3.3.14. GetEnabledTLSVersions

	5.4. IEEE 802.1X
	5.4.1. AddDot1XConfiguration
	5.4.2. GetAllDot1XConfigurations
	5.4.3. GetDot1XConfiguration
	5.4.4. DeleteDot1XConfiguration
	5.4.5. SetNetworkInterfaceDot1XConfiguration
	5.4.6. GetNetworkInterfaceDot1XConfiguration
	5.4.7. DeleteNetworkInterfaceDot1XConfiguration

	5.5. Autorization Server Configuration
	5.5.1. GetAuthorizationServerConfigurations
	5.5.2. CreateAuthorizationServerConfiguration
	5.5.3. SetAuthorizationServerConfiguration
	5.5.4. DeleteAuthorizationServerConfiguration

	5.6. JWT-based authentication
	5.6.1. GetJWTConfiguration
	5.6.2. SetJWTConfiguration

	5.7. Capabilities
	5.7.1. GetServiceCapabilities
	5.7.2. Keystore Capabilities
	5.7.3. TLS Server Capabilities
	5.7.4. IEEE 802.1X Capabilities
	5.7.5. Authorization Server Capabilities
	5.7.6. Capability-implied Requirements

	5.8. Events
	5.8.1. Key Status

	5.9. Service specific data types

	Chapter 6. Security Considerations
	Chapter 7. Design Rationale
	7.1. General Design Goals
	7.2. Keystore
	7.3. TLS Server

	Annex A: JWT Content example
	Annex B: JWT over SCTP example
	Annex C: JWT over HTTPS example
	Annex D: JWT over RTSPS example
	Annex E: Revision History

